
A Scalable Physical Memory Allocation
Scheme For L4 Microkernel

Chen Tian, Daniel Waddington, Jilong Kuang

Computer Science Lab, Samsung Information System America Inc.

{chen.tian, d.waddington, jilong.kuang}@samsung.com

Abstract

L4 microkernel family has become very successful on mobile de-
vices. However, with the rapid shift from uniprocessor to multi-
core and manycore processor, many critical OS functions includ-
ing physical memory allocator (PMA) must be re-designed in order
to achieve better system throughput. While research and engineer-
ing efforts have been made for PMA in monolithic kernels such as
Linux, not much work can be found for L4 microkernels. Due to
the the design difference, the PMA in L4 microkernels is part of
user level page fault handler (a.k.a. pager), which is executed as a
stand-alone server in the least privilege mode. Memory allocation
and free requests are handled through inter-process communication
(IPC) rather than normal system or kernel function calls. In this
work, we first study the scalability issue of the PMA implementa-
tion in L4 microkernels, and propose our solution in the context of
Fiasco.OC, a state-of-the-art L4 microkernel implementation. We
also discuss how to leverage the L4 microkernel design advantages
to implement a PMA with more advanced features, such as load
balancing, customizability and NUMA-awareness. Finally, we con-
duct experiments to verify the scalability result of our solution. The
experiment is conducted on a 48-core AMD magny-cours server.

Keywords microkernel, multicore processor, memory allocation

1. Introduction

L4 microkernel family has become very successful on mobile de-
vices because it can provide virtualization and security for other
mobile applications including Android and Linux. For example,
L4Android[4] and L4Linux[6] projects have successfully ported
Android and Linux on L4 Fiasco.OC microkernel[5]. OK Labs also
announced that the OKL4[10] microkernel has been deployed on
over 1.5 billion mobile devices. However, with the rapid shift from
uniprocessor to multicore processor that is common in both server
and mobile devices, many critical OS functions including physical
memory allocator (PMA) must be re-designed in order to achieve
better system throughput. While research and engineering efforts
have been made for PMA in monolithic kernels such as Linux, not
much work can be found for L4 microkernels.

In a monolithic kernel like Linux, PMA always exists in the
most privileged level (a.k.a. kernel mode) and services all kinds
of physical memory requests. When an application first touches
a virtual memory location allocated by a virtual memory allo-
cator (VMA) (e.g. malloc), a page fault (PF) exception will be
raised by processor and PMA is called inside PF handler to ser-
vice a page allocation request. This allocation-on-demand behavior
is also known as the memory overcommit policy, which is com-
mon in modern OS. Besides, when OS needs to dynamically create
some kernel objects it directly asks for physical memory from PMA
rather than using VMA and page fault mechanism to allocate phys-

ical memory. Thus, PMA needs to service direct calls from other
part of kernel as well.

In contrast, PMA in L4 microkernels is rather different from that
in a monolithic kernel due to the different OS design principles. The
main idea of microkernel architecture is to use minimum software,
which is usually the only one executed at kernel mode, to provide
other software with most basic mechanisms including hardware in-
terrupt/exception handling, process management and inter-process
communication (IPC). All other functions that may benefit from
more flexible implementation or potentially break down the sys-
tem, such as physical memory allocation, device drivers and file
systems are provided as services executed at user mode. Conse-
quently, a PMA is split into two parts, one still staying in kernel
mode, and the other running as a server in user mode. While ker-
nel mode PMA services all dynamic memory allocation requests
made by code running in kernel, user mode PMA mainly handles
the memory requests made by other applications. Similar to Linux,
an application’s physical memory requests are delivered to PMA
through page fault handler, which is implemented as a server too.
Servicing page fault related memory allocation actually reduces the
need of considering fragmentation and cache false sharing issue,
because such allocations are made at page granularity and typically
one physical page is given out upon a page fault.

When an OS is deployed onto multicore and manycore proces-
sors, the scalability of PMA becomes critical to system throughput.
Many scalable PMA designs have been studied and even imple-
mented in monolithic kernels. For example, Linux kernel has de-
ployed a scalable buddy allocator in version 2.6.24 [17]. The basic
idea is to reduce the contention of coalescing and splitting memory
regions by using per-cpu based list. Although prior research [3] re-
ports that Linux still has scalability issue in memory management,
decentralization must still be performed for improving the scala-
bility in general. In this paper, we show that creating a PMA for
each core can achieve good scalability in L4 microkernel, because
it not only reduces the contention, but also effectively reduces IPC
overhead that is critical to microkernel’s performance. It should be
noted that this work focuses on user mode PMA, which manages
over 90% physical memory of the system, because the portion of
physical memory reserved and managed by kernel mode PMA is
very small (usually less than 8%).

The remainder of this paper is organized as follows: section 2 in-
troduces general L4 microkernel architecture and describes the ex-
isting scheme of physical memory allocation. Section 3 presents the
design and implementation of a scalable PMA under Fiasco.OC.
Section 4 describes how to implement more advanced features on
top of the basic implementation. Experimental results are presented
in section 5 followed by related work in section 6. We conclude in
section 7.

2. Background

2.1 Microkernel Architecture

Traditionally, an OS kernel is responsible for managing hard-
ware resources and provide necessary services to applications.
Those services include physical memory and virtual memory man-
agement, thread scheduling, file system management and device
drivers and so on. Most famous kernels such as Linux, Mac OS,
Windows maintain the service routines in kernel mode as shown on
the left of Figure 1, and therefore called monolithic kernels. While
they have been predominately deployed on different computing
platforms, the increasing complexity due to diversified features
and reliability issues due to incorporating more device drivers have
demanded tremendous efforts in maintenance and upgrading.

Processors

Memory

PCI devices

….

Hardware

Kernel Mode

User Mode

ApplicationApplication

Drivers

File

System

System calls

Memory

management

IPC

Scheduling

Network

protocols

Hardware

Kernel Mode

User Mode

ApplicationApplication

Drivers

File System

Service

System calls

Page Table

Management

IPC
Scheduling

Other services

Memory Services

Processors

Memory

PCI devices

….

Other functions

Monolithic Kernel Microkernel

Figure 1. Design Difference between Monolithic kernel and mi-
crokernel.

As an alternative, microkernel design has much less complexity
as shown on the right of Figure 1. The key difference is that most
OS-provided services are moved from kernel mode to user mode.
Only essential functionalities such as IPC, thread scheduling and
page table maintenance are still kept in kernel mode. As a result,
any service request from an application needs to be directed to
the service provider, which is now a stand-alone process, through
IPC calls. This design makes microkernel much simpler and more
robust compared to monolithic kernel. Due to fewer functionalities,
a microkernel can be implemented in less than twenty thousand
of lines of source code, and thus is not difficult to maintain. The
executable binary is usually as small as a few hundreds Kilobytes,
which can easily fit into the L2 Cache of many types of processors.

Figure 2. Handling services in Monolithic kernel and microkernel.

The study on microkernel architecture was intensively con-
ducted two decades ago. Although many different examples, in-
cluding Mach [1], the earlier version of monolithic kernel Mac OS
and GNU microkernel Hurd [9], have been presented, the perfor-
mance was very disappointing due to considerable overhead. The
reason is that a service request that would normally need two con-
text switches now require four context switches to be completed as

shown in figure 2. Although IPC performance seems to be a funda-
mental problem to microkernel, the research results from Liedtke
et al. in 1997 have revealed that IPC designs and implementations
can be highly optimized [14]. As a result of a sequence of re-
search efforts, second generation microkernels featured with high
IPC performance have been designed and implemented. Most no-
table example is L4 microkernel family[13], including L4/Fiasco,
L4Ka::Pistachio, and NICTA::L4-embedded and so on.

Lately, more research efforts are made to further improve micro-
kernel’s performance and enrich its features. These efforts lead to
third generation microkernels that have drawn intensive attention
from both academia and industry. Representative designs include
Fiasco.OC[5], Nova[16], seL4 [12] and OKL4 [10]. These designs
not only have further optimized IPC, but also offer different attrac-
tive features including real-time support, resource access control
mechanisms, security and virtualization and so on. In this work, we
choose Fiasco.OC as the kernel to verify our idea.

2.2 Physical Memory Management in Fiasco.OC

Physical memory management is one of the most basic functions
an OS must provide. When an OS is booted, both OS kernel and
applications running within the OS need to make physical memory
allocation requests dynamically. Different from monolithic kernels
(e.g., Linux) where all these requests are handled in kernel mode,
microkernels such as Fiasco.OC have two PMAs, one in kernel
mode using buddy allocation algorithm, the other in user mode
using an AVL tree based allocation algorithm.

Kernel func�ons Kernel PMA

Sigma0 Process

User PMA

Kernel Mode

Kernel page fault

handler

Applica�on Process

VMA

User Mode

1. Virtual mem.

alloca�on

Write virtual

memory

2. Page fault (PF) 3. Redirect PF

to sigma0

5. Physical

Page allocated

4. Physical mem.

alloca�on req.

6. Resolve PF

Direct physical

mem. alloca�on

7. Return to faul�ng

instruc�on

Figure 3. Physical Memory Allocation in Fiasco.OC.

Figure 3 shows how physical memory allocation requests are
handled in Fiasco.OC. First of all, kernel functions can directly al-
locate physical memory though kernel PMA when a kernel object
is created. The amount of memory managed by kernel PMA how-
ever is only 8% of the total by default. The rest of the memory is
managed by a user level PMA and used by applications. This work
focuses on this PMA. From the figure, we show a very typical se-
quence of operations that eventually trigger a page allocation and
make uses of an allocated page. A process first allocates a stack
variable or heap data through a virtual memory allocator such as
malloc (step 1). When the virtual address is touched (either read
or write), a page fault exception is raised by the processor, which
transfers the execution from user code to kernel PF handler (step
2). The handler further forwards the request to a special user-level
application, Sigma0 (also known as pager), which by default han-
dles all page faults in L4 microkernel design including Fiasco.OC
(step 3). In a multicore environment, it is possible to have multi-
ple page faults take place on different cores simultaneously. In this
case the kernel PF handler serializes them and forwards the request

to Sigma0 one by one. When received a PF through an IPC call,
Sigma0 requests a physical page from PMA (step 4 and 5), which
is typically implemented as part of Sigma0, and send it back to ker-
nel (step 6), which then populates the page table for the faulting
process. After that, kernel PF handler switches back to the faulting
instruction so the application process can continue (step 7).

While the entire process is transparent to applications, it in-
volves four context switches (step 2, 3, 6 and 7), two of them being
IPC calls (step 3 and 6). This is the cost that L4 microkernel design
must pay for security and reliability.

3. A Scalable PMA Design For L4 Microkernel

3.1 Scalability Issue

Most monolithic OS kernels support multi-tasks running on multi-
core and manycore processors, and therefore a PMA must be able
to handle concurrent requests made by different processes running
on different cores. As a result, lock based synchronization is typ-
ically used to ensure the PMA (or the data structure in PMA) is
exclusively used by only one process at a given time. This solution,
however, may introduce severe scalability issue due to lock con-
tention. Several solutions have been proposed in Linux to remove
such big locks, i.e., locks that cause high contention. For exam-
ple, the buddy allocator in Linux kernel 2.6.24 uses per-core lists,
which are protected by per-core locks, to track free pages. In the
presence of NUMA architecture, Linux kernel 2.6.30 employs an-
other allocation scheme that assigns one allocator for each NUMA
zone.

Although the scalability issue of handling physical memory
requests in monolithic kernels has drawn enough attention, it has
not been fully studied in L4 microkernels. To address this issue,
we first measured the scalability of memory allocation and free
using L4Re, the native runtime environment of Fiasco.OC [7]. As
shown in Figure 4, as the number of cores that sends memory
allocation and free requests increases, the time of servicing requests
is significantly increased. The degradation across 48 cores is 25x
for allocation and 2x for free respectively.

0

5

10

15

20

25

30

1 core 6 cores 12 cores 24 cores 48 cores

N
o

rm
a

li
z
e

d
 T

im
e

Alloc

Free

Figure 4. Scalability of Allocation and Free in L4Re.

While the degradation of physical memory allocation in Linux
is caused by locks, the reasons for that in the context of L4 micro-
kernel architectures are different. First, the contention of sending
IPC to Sigma0 causes the PMA in L4 microkernel not to scale.
Sigma0 by default is the only pager in the system. When multiple
requests from different cores need to be handled at the same time,
the kernel PF handler needs to serialize the requests and send them
to Sigma0. This is analogous to the lock contention in monolithic
kernel.

Second, cross-core IPC (i.e., two parties of an IPC on differ-
ent cores) can have significant negative impact on the scalability of
PMA. IPC mechanism in L4 microkernel like Fiasco.OC is funda-
mental for the entire OS architecture. For example, a physical page

request requires an IPC with Sigma0 as shown in step 3 and 6 in
Figure 3. Although the IPC implementation has been highly opti-
mized, cross-core IPC is still 10x-12x slower than same-core IPC
(i.e., two parties of an IPC on the same core).

Figure 5 has shown the experimental result collected using
a modified ping-pong benchmark running on a 2.0GHz 48-core
AMD server. Despite the message size, we can see that same-core
IPC takes a few hundreds CPU cycles while a cross-core IPC takes
about 12 thousands cycles. This is because cross-core IPC involves
inter-processor interrupt (IPI) handling, which causes serialization
in kernel code and hardware.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

R
o

u
n

d
-t

ri
p

 E
x

e
cu

!
o

n
 T

im
e

 (
C

y
cl

e
s)

Message Size (# of 32-bit integers)

Cross-core IPC

Same-core IPC

Figure 5. Performance Comparison Between Cross-core IPC And
Same-core IPC.

3.2 A Scalable PMA Design

Design PMA can be deployed globally, for each zone, for each core
or even for each process. Based on the reasons for the PMA scal-
ability issue in L4 microkernel, i.e., the contention of concurrent
page requests and poor cross-core IPC performance, we believe the
per-core PMA is the best design for microkernel. Since in L4 mi-
crokernel architecture, a PMA is part of a pager, we essentially need
to deploy a pager for each core as well. Figure 6 demonstrates the
idea.

Kernel mode

User mode

P
a
g

e
r

N

Core N

P
ro

c
e

s
s
 N

Page alloca!on

request & reply

...

P
a

g
e

r
1

Core 1

P
ro

c
e

s
s
 1

Page alloca!on

request & reply

Idle
Running

Figure 6. Creating One Pager For Each Core Improves Scalability.

The benefit of this design is it addresses both problems that
lead to scalability issue. First, it reduces the contention by N times
on average where N is the number of cores, because there exist
N pagers in the system now. Second, it eliminates all cross-core
IPCs of page allocations, as each core now has a pager and every
process can use same-core IPC to communicate with the local
pager. All page requests can be handled on the same core rather
than a different core, which is similar to monolithic kernel.

As a result, The performance and scalability of page allocation
can be largely improved. Another good side-effect of this design is

that the CPU utilization can also be maximized, because no local
physical memory request interrupts the application executed on a
remote core.
Implementation The general idea of implementing the per-core
PMA scheme in Fiasco.OC is to first partition physical memory,
and then construct per-core pagers, which initializes PMAs using
the right partition. Figure 7 illustrates the implementation details.

Boot Loader

Kernel mode

User mode

Core 1

Pager 1

...

...

...

Fiasco.OC kernel

Sigma0

Pager N PMA N

Core N

Step 1: Par!!on memory

Step 2: Create

per-core pagers and

Ini!alize their PMAs

Region 1 Region N

PMA 1

Figure 7. Implementing Per-core Pager and PMA On Fiasco.OC.

When Fiasco.OC kernel is booted, it loads another two modules,
Sigma0 and moe. Sigma0 is the default pager and moe is the default
loader (like init process in Linux). To construct per-core pagers, we
developed our own loader. As shown in Figure 7, the loader first
obtains all physical memory that are made available by kernel and
then partitions them according to a predefined policy. In our basic
implementation, memory is split evenly across all cores.

After that, the loader spawns N new pager processes where N is
the number of cores, each running on a different core. Each pager
obtains initialization information through an IPC with the loader
and then initializes itself. During the initialization, a pager creates a
PFA that manages the memory region assigned to the core the pager
resides. There exist many different data structures and algorithms
that are suitable for physical memory management. In our basic
implementation, we use an AVL tree based algorithm, which can
also be found in [7, 8].

Finally, the boot loader needs to specify the pager for each appli-
cation based on which core an application is loaded. In Fiasco.OC,
the kernel data structure of a process (a.k.a task) contains a filed
that can point to any valid pager process. A system call is also pro-
vided to set this field in Fiasco.OC. The original idea of pager cus-
tomization in L4 microkernel is to implement nested pager, which
is important for achieving resource isolation. We leverage this fea-
ture to ensure each process is connected with the pager that runs
on the same core as the application does. A page fault on each core
now can be successfully resolved by the same core pager as pro-
posed in Figure 6. As a result, this design and implementation lead
to significant improvement on the scalability of physical memory
management.
TLB Issue During the implementation, we noticed there is a TLB
flush issue that causes performance degradation when pager han-
dles free request. Specifically, when a physical page in a process
is released by pager, the mapping between this page and its corre-
sponding virtual page needs to be removed from page table. Since
TLB caches page table entries, it must be updated.

The implementation in Fiasco.OC is straightforward, that is, to
flush the entire TLB in the core on which the application is running.
Since the flush call is made in the pager process, and the pager
and application now are on the same core, flushing TLB actually
causes the pager process to re-populate the TLB before it yields.

However, this flush can be safely removed in our design because
when pager is context-switched to the application, which is running
on the same core, TLB is flushed anyway. Alternatively, one can
also leverage hardware features such as Address Space ID(ASID)
associated TLB or instructions that support individual TLB entry
invalidation.

4. More Advanced Features

While per-core PMA design in Fiasco.OC achieves better perfor-
mance, many more advanced features can be added by leveraging
the microkernel architecture advantages. In this section, we de-
scribes how to implement three additional features, namely load
balancing, customizability and NUMA-awareness as shown in Fig-
ure 8, on top of the basic implementation described in previous
section.

M
EM

1

M
EM

2

M
EM

3

M
EM

4

Core 1

Allocator 1

re 2 Core 3

Allocator 2 Allocator 3

11 3CCCC

N
U

M
A

-a
w

a
re

Buddy

Allocator

Slab

Allocator

Customized

Allocator

AVL Tree

Allocator

C
u

st
o

m
iz

ab
le

Transfer

Mem Usage > threshold

Lo
ad

 B
al

a
n

ci
n

g

Available

Used

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Alloca!on Request

Figure 8. A Scalable PMA With More Advanced Features.

4.1 Load balancing

Having a de-centralized design is usually the key to solve scala-
bility issues. However, highly de-centralization may lead to a load
unbalance problem. Particularly, while the per-core PMA can re-
duce contention caused by multiple concurrent requests, system
throughput may still stay poor when the amount of memory re-
quests on each core is unbalanced. Thus, a balancing scheme needs
to be implement to maintain a good load balance among all PMAs.

One simple design of the load balancing feature, as shown on
the top of Figure 8 is to make each PMA track the current memory
usage and use two threshold values MEM HIGH and MEM LOW
to maintain the balance of unused memory across all PMAs in the
system. The detailed implementation are as follows. After servicing
an allocation request, a PMA compares its available memory size
with MEM LOW. If the size is too small, a memory low request
is sent out to other PMAs. The PMAs whose memory usage is
low should response to the request and transfer some memory
to the requester. Similarly, after each free, a PMA recalculates
the memory usage and compares the available memory size with
MEM HIGH. If the usage is very low and some of the memory is
donated by another PMAs, a memory return request should be used
so that the donated memory is sent back to the donors.

Since each PMA is part of a pager process, the load balancing
requests among PMAs can piggyback on the IPCs among pager
processes. When multiple requests are sent to the same pager, they
are serialized by kernel and therefore no additional synchronization
is needed. However, these requests are essentially cross-core IPCs,
so threshold values must be carefully tuned to avoid excessive IPC
overhead.

4.2 Customizability

A PMA can be implemented with various algorithms such as tree
based algorithm, buddy algorithm and slab allocators and so on.
Depending on the memory access pattern of an application, differ-
ent applications may favor different algorithms in terms of perfor-
mance. Thanks to the design of L4 microkernel, we can modify the
basic per-core PMA implementation so that each PMA is customiz-
able as shown in the middle of Figure 8.

To allow an application to customize its local PMA, a set of
explicit pager API functions should be implemented because the
pager has the control of the PMA it owns. The pager API functions
should be implemented on top of IPC and control the behavior
of PMA. For example, one API can specify what PMA algorithm
is likely to yield better performance for the running application.
Since the application and pager are placed on the same core, and
these pager APIs are expected to be called at very low frequency,
performance gain of this feature will outweigh the extra overhead
caused by API invocation and PMA reshaping . To ensure this, the
relationship between application performance and PMA algorithm
should be known by developers or obtained through profiling or
compiler analysis.

4.3 NUMA-awareness

As the number of on-chip cores increases, non-uniform memory
access (NUMA) design becomes prevalent. Under NUMA, a core
accessing its local memory is much faster than accessing remote
memory. Therefore, when receiving a page allocation request, a
PMA needs to allocate a local page whenever possible to achieve
better performance.

To make the PMA design aware of NUMA , we only need to
change the memory partition policy to recognize NUMA zones
(step 1 in Figure 7). Specifically, the boot loader needs to first ex-
tract NUMA information from ACPI table and partition the mem-
ory according NUMA zones. Within a NUMA zone, the memory
should be further partitioned among cores if more than one core
exist. The rest steps of constructing per-core PMA remain the same
and each PMA now manages its local memory region. As a result,
an application can automatically take advantage of hardware bene-
fits.

It should be noted that when load balancing scheme as discussed
in earlier section is implemented, memory transfer policy needs to
be NUMA aware as well. In particular, the memory transfer should
take place within a NUMA zone first so architecture’s negative
impact on performance can be minimized.

5. Experimental Results

To show the effectiveness of the per-core PMA scheme, we conduct
a set of experiments and use L4Re based implementation as a
comparison where sigma0 is used by all processes.

5.1 Setup

Software We developed a memory allocation benchmark to stress
the physical memory allocator. In particular, the benchmark per-
forms 100 times of memory allocation task. Each task first allo-
cates certain number of memory pages, then touches the first byte
of each page, which invoke the physical memory allocation, and fi-
nally frees all pages. We also developed a L4Re version equivalent
benchmark for comparison.

To eliminate the effect of virtual memory allocation, we write
our own version of malloc that does not perform any optimization,
but simply manages a 2GB virtual memory range. In addition, the
free call not only reclaims the virtual memory, but also sends the
free request to PMA so that physical page can be freed and no
physical to virtual mapping is cached.

The Fiasco.OC kernel used in the experiment is Revision 36.
x86 32-bit build without kernel debugger. The kernel, loader, pager
and benchmark are all compiled by GNU GCC 4.4.6 with -O2
optimizations.
Hardware The experiments are conducted on an AMD Magny-
cours server equipped with four AMD Opteron 6174 2.2MHz pro-
cessors (also called multi-chip module packages. Each processor
combines 2 dies of 6 cores, so there are 48 cores in total. Each core
has a 64KB L1 D-Cache, 64KB I-Cache and 512KB L2 cache.
Each die shares a 12MB L3 cache. During the experiment, 4GB
DRAM is used due to the limitation 32-bit address space.

5.2 Results

Scalability The first experiment we conducted is to compare the
scalability between our per-core PMA design and L4Re native
PMA. In the experiment, we create an instance (process) of the
benchmark on each core. A coordinator process is also created to
ensure that all processes start at the same time. Each process allo-
cates 10,000 pages in total. The L4Re memory allocation bench-
mark is configured and deployed in the same way.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 6 12 18 24 30 36 42 48

N
o

r
m

a
li

z
e

d
 T

im
e

Number of Cores

Per-core PMA

L4re

Figure 9. Scalability Comparison.

Figure 9 shows the normalized results in terms of execution
time. As the number of cores increases from 1 to 48 at step 6, the
normalized time of using our PMA stays flat and the degradation is
only about 5% when 48 cores are used. In the case of using L4Re
native PMA, however, the performance degrades over 240%.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 core 6 cores 12 cores 24 cores 48 cores

N
o

r
m

a
li

z
e

d
 T

im
e

Alloc

Free

Figure 10. Scalability of Allocation and Free.

We also measured the performance of memory allocation and
free separately and Figure 10 shows the result. Although a small
degradation i.e., 4% for alloc and 5% for free, can be noticed
when 48 cores are used, the scalability of allocation and free call
is much better compared to L4Re native PMA (as shown Figure 4)
where the degradation for alloc and free are over 2500% and 230%
respectively.

Performance Sensitivity While our main goal in this work
is to obtain good scalability, we noticed that the performance is
sensitive to the number of outstanding pages (i.e., the number of
pages that have been allocated before free starts). As shown in
Figure 11, when the number of outstanding pages increases from
50(200KB memory) to 1000(4MB memory), we observed a 1.8x
slowdown. This is because we are using AVL tree algorithm to
maintain allocated and freed memory chunks in each PMA. Thus,
the more outstanding pages, the more nodes in the tree, which
increases the time of lookup, re-balancing, insertion and deletion.

Despite the performance degradation, we still observe good
scalability of our implementation. The most degradation across 48
cores we observed is only about 8%, which happens when we keep
1000 outstanding pages before any page is freed.

0

10000

20000

30000

40000

50000

60000

1 core 6 cores 12cores 24 cores 48 cores

P
e

r-
p

a
g

e
 A

ll
o

c+
F

re
e

 T
im

e
 (

C
y

cl
e

s)

50 pages

100 pages

200 pages

500 pages

1000 pages

Figure 11. Sensitivity of Outstanding Pages.

6. Related Work and Future Directions

L4Re, the native runtime system of Fiasco.OC, contains many
servers that provide OS services [7]. Like other L4 microkernels,
the physical allocator is implemented in the default pager, sigma0.
As we discussed earlier, having a single pager in the system may
lead to severe scalability problem on multicore and manycore plat-
forms. This work aims to solve this problem by enabling per-core
PMA, which is complementary to memory allocator in L4Re.

Another physical memory allocation scheme for L4 microkernel
is from Genode Labs [8]. Since the goal of Genode is to achieve
secure resource management, the scalability is not emphasized.
Although the pager in Genode system is multithreaded, all threads
are running on core 0. As with older Linux memory allocators,
the Genode memory allocator uses a lock to prevent concurrent
accesses. This design causes the the scalability issue too.

Similar to Fiasco.OC, several other scalable microkernel de-
signs have also been proposed. For example, Wentzlaff et al. has
proposed a scalable OS design that deploys multiple servers for
each OS service [17]. Singularity [11] and Barrelfish [2] developed
by Microsoft Research and ETH Zurich Systems Group borrow the
ideas from distrusted system and apply them to manycore system.
HeliOS [15] is also from Microsoft Research that targets heteroge-
neous platform. Physical memory allocation scheme in these works
is not emphasized. Special cares such as load balancing and cus-
tomizability are not taken. The idea proposed in our work, however,
is not only suitable for L4 microkernels, but can also complement
the above-mentioned microkernels on physical memory allocation.

The scalability of physical memory allocation has drawn plenty
of attention in monolithic kernel community. Although the memory
allocator in Linux has evolved from single allocator to a per-cpu-
list based buddy allocator, prior work has reported that it still has
scalability issue[17]. While Linux continues to make improvement,
we believe some advanced features still need to be implemented
such as load balancing and customizability.

In the future, we plan to continue our work in two directions.
First, we will implement those more advanced features in PMA and
use real-world applications to make quantitative analysis. We ex-
pect that different applications will get benefits from different kind
of features. Second, we will study the physical memory allocation
in multi-threaded applications. In this work, we only consider mul-
tiple processes running in the system. However, a multithreaded
process poses new challenges to the scalability issue because con-
tention may occur on the page table. Thus, a scalability design of
page table may need to be considered too.

7. Conclusion

In this work, we investigate the root cause of the scalability is-
sue for the physical memory allocator in L4 microkernels. We pre-
sented an implementation of a scalable physical memory allocator
in the context of Fiasco.OC L4 microkernel architecture. We also
discussed some more advanced features that can be implemented
by leveraging L4 microkernel design advantages. Finally, we con-
ducted a set of experiments on a 48-core machine to verify the scal-
ability results of the per-core PMA design in L4 microkernel.

References

[1] M. Accetta, R. Baron, W. Bolosky, R. Golub, Davidand Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation for unix
development. In Proceedings of the USENIX Summer Conference,
pages 93–113, 1986.

[2] A. Baumann, P. Barham, P.-É. Dagand, T. L. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new
os architecture for scalable multicore systems. In SOSP, pages 29–44,
2009.

[3] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of linux scal-
ability to many cores. In Proceedings of the 9th USENIX conference

on Operating systems design and implementation, OSDI’10, pages 1–
8, Berkeley, CA, USA, 2010. USENIX Association.

[4] http://l4android.org/.

[5] http://os.inf.tu dresden.de/fiasco/.

[6] http://os.inf.tu dresden.de/L4/LinuxOnL4/.

[7] http://os.inf.tu dresden.de/L4Re/.

[8] http://www.genode.org.

[9] http://www.gnu.org/software/hurd/hurd.html.

[10] http://www.ok labs.com.

[11] G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack.
SIGOPS Oper. Syst. Rev., 41(2):37–49, Apr. 2007.

[12] G. Klein, P. Derrin, and K. Elphinstone. Experience report: sel4:
formally verifying a high-performance microkernel. In Proceedings

of the 14th ACM SIGPLAN international conference on Functional

programming, ICFP ’09, pages 91–96, 2009.

[13] J. Liedtke. On microkernel construction. In Proceedings of the

Symposium on Operating System Principles, pages 237–250, 1995.

[14] J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig, G. Heiser, N. Is-
lam, and T. Jaeger. Achieved ipc performance (still the foundation for
extensibility). In Proceedings of the 6th Workshop on Hot Topics in

Operating Systems (HotOS-VI), Cape Cod, MA, May 5–6 1997.

[15] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt.
Helios: heterogeneous multiprocessing with satellite kernels. In Pro-

ceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, SOSP ’09, pages 221–234, 2009.

[16] U. Steinberg and B. Kauer. Nova: a microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European con-

ference on Computer systems, EuroSys ’10, pages 209–222, 2010.

[17] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the
case for a scalable operating system for multicores. SIGOPS Oper.

Syst. Rev., 43(2):76–85, Apr. 2009.

