

Staircase Join : Teach a
Relational DBMS to watch its
(Axis) Steps.

Authors:
Torsten Grust
Maurice van Keulen
Jens Teubner

Presented by
Sanjay Kulhari

Agenda

 Background
 XML and Relational Databases
 XPath

 XPath Accelerator
 Pre/Post Plane
 SQL Based XPath evaluation

 Staircase Join
 Pruning
 Partitioning
 Algorithm

XML and Relational Databases

 Specialized data type for XML.
 No. of methods associated with this data type.
 Methods access XML Document Object Model.
 Methods uses XPath expression as argument to search

and retrieve nodes.

XPath

 XPath is a specialized expression language used to parse
through XML.

 State/City[Population > 100000]
 XPath nodes

 Document, Element, Attribute, Text
 XPath Axes

 Define and allow access to any node within XML document.
 Major XPath axes

 Ancestor
 Descendent
 Following
 Preceding

XPath Axes
a

b

d

e

f
i

g h
j

c

b

d

e

f
i

g h
j

c

a

a

b

d

e

f
i

g h
j

c

a

b

d

e

f
i

g h
j

c

Preceding

Ancestor Following

Descendant

Context node (f)

XPath Accelerator

 Relational XML encoding.
 Document is represented as a relational table.
 Indexed using indexed structure native to the RDBMS.
 Queried using relational language.

Pre/Post Plane
a

b

d

e

f i

g h
j

c

0

1

2

3 4

6 7

8

9

5

a

b

d

e

f i

g h
j

c
0

1 2

3 4
6

7

8

9

5

Post order traversal
Pre order traversal

5

5(0,0)

a

b

c

d

e

f

g

h

i
j

Pre Post

a

b

c
d
e
f
g

h
i

j

0
1 1

9

2
3
4
5
6

7
8

9

0
2
8
5
3

4
7

6

Ancestor Following

DescendantPreceding

Preorder rank

Postorder rank

SQL-based XPath evaluation

a

b

d

e

f
i

g h
j

c

(c)/following/descendant = (f, g, h, i, j) SELECT DISTINCT v2.pre
FROM doc v1,doc v2
WHERE v1.pre > pre(c)
AND v1.pre < v2:pre
AND v1.post > post(c)
AND v1.post > v2.post
ORDER BY v2.pre

Pre Post

a

b

c
d
e
f
g

h
i

j

0
1 1

9

2
3
4
5
6

7
8

9

0
2
8
5
3

4
7

6

Pre Post

a

b

c
d
e
f
g

h
i

j

0
1 1

9

2
3
4
5
6

7
8

9

0
2
8
5
3

4
7

6

V1 V2

|(v)/descendant| = post (v) – pre (v) + level (v)
<=h

AND v2.pre <= v1.post + h AND v2.post >= v1.pre + h

Staircase Join
Ancestor Following

DescendantPreceding

Basic idea : Join is made between set of context nodes
and the pre/post relational table by using knowledge of
the pre/post plane.

Pre Post

d
e
f

h
i

j

3
4
5

7
8

9

2
8
5

4
7

6

Pre Post

a

b

c
d
e
f
g

h
i

j

0
1 1

9

2
3
4
5
6

7
8

9

0
2
8
5
3

4
7

6

V1

V2

Pre Post

a
d
e
f

h
i

j

0 9
3
4
5

7
8

9

2
8
5

4
7

6

ResultX

All nodes
Result

Context nodes

Use predicates based on pre/post knowledge

Ancestor-or-self for (d,e,f,h,i,j)

Staircase Join (Cont.)

 Pruning

Ancestor-or-self for (d,e,f,h,i,j)

(d,a), (e,a),(f,e,a), (h,f,e,a),(i,e,a),(j,i,e,a) 11 duplicates

Final result (a,d,e,f,h,i,j)

(d,a), (h,f,e,a),,(j,i,e,a) 3 duplicates

Final result (a,d,e,f,h,i,j)

Ancestor-or-self for (d,h,j)

(e,f,i) removed from context

Staircase Join (Pruning)

Overlapping regions

Staircase Join (Pruning)

Overlapping regions

Staircase Join (Pruning)

Pruning procedure for descendent axis

Removal of nodes from overlapping regions

c1,c2 and c3 relate to each other on preceding/following axis

Context establishes a boundary that resembles a staircase.

Staircase Join (Pruning)

Empty regions in pre/post plane

(a,b)/following = S U T U W

 = T U W
= (b)/following

Staircase Join (Partitioning)

The partitions [p0; p1), [p1; p2), [p2; p3) of the ancestor staircase
separate the ancestor-or-self paths in the document tree

Pruned on ancestor axis

Staircase Join
(Algorithm)

Characterstics

2. Scans the doc and context
table sequentially

3. Scans both the tables only
once for the entire context
sequence.

4. Never duplicate nodes.

5. Result nodes are produced
in document order.

Staircase Join (Skipping)

(c1,c2)/descendant

Region between pre(v) and pres(c2) is skipped

No node beyond v contributes to the result.

Experimental results

Conclusion

Increased tree awareness can lead to significantly improved
XPath performance.

Future research

 To experiment in a commercial disc based RDBMS.
 Use larger documents >> 1GB
 Parallel XPath execution strategy

Thank You

