
A Compartmentalized Approach to the Assembly of Physical Maps

Serdar Bozdag∗, Timothy J Close† and Stefano Lonardi∗

∗Department of Computer Science and Engineering
University of California, Riverside, CA 92521

{sbozdag,stelo}@cs.ucr.edu

†Department of Botany and Plant Sciences
University of California, Riverside, CA 92521

timothy.close@ucr.edu

Abstract

We propose a novel compartmentalized method for the
assembly of physical maps from fingerprinted clones. Our
assembler exploits the presence of genetic markers at the
global level to improve the accuracy of the assembly.
Experimental results on the genome of rice and barley
demonstrate that the compartmentalized assembler pro-
duces significantly more accurate maps, and that it can
detect and isolate clones that induce chimeric contigs.

I. Introduction

A physical map is a linear ordering of a set of
clones encompassing a chromosome. Physical maps can
be generated by first digesting clones with a restriction
enzyme such as EcoRI, and then detecting their overlaps
by matching the lengths of the fragments, called bands,
produced by the digestion. There are two mainly used
methods to read the bands, namely agarose gel-based [24]
and high information content fingerprinting (HICF) [10],
[11], [19]. In the former, digested fragments are run on an
agarose gel to determine their sizes. In contrast, the latter
uses multiple restriction enzymes and the fragments are
run on a capillary gel electrophoresis.

Physical maps have been historically one of the cor-
nerstones of genome sequencing projects. For instance, in
clone-by-clone sequencing, first a physical map is con-
structed from fingerprinted clones; then, a set of minimally
overlapping clones that span the entire genome, called
minimal tiling path (MTP) is selected; finally, the clones
in the MTP are sequenced one by one [14]. The clone-by-
clone method has been used to sequence several genomes

including A. thaliana [21], H. sapiens [16], and O. sativa
[9], [29]. In several recent whole-genome shotgun sequenc-
ing projects, physical maps have been also employed to
validate and improve the sequence assemblies [30]. This
latter strategy has been used, e.g., in the assembly of
M. musculus [15], R. norvegicus [17], and G. gallus [25].

For very large and highly repetitive genomes, physi-
cal maps that are augmented with “landmarks” such as
genetic markers or expressed sequenced tags (ESTs) can
be used for targeted sequencing. In targeted sequencing,
only a region of interest of the genome is sequenced. For
instance, one could focus on the gene-rich regions, like
in the ongoing sequencing projects of Z. mays [7] and
S. bicolor [8]. Physical maps are essential not only in
genome sequencing, but they can also provide a robust
infrastructure required by many applications in genomics
such as marker assisted breeding, map based cloning of
interesting genes, and high throughput EST mapping just
to name a few.

Despite an extensive corpus of algorithmic studies in
the eighties and nineties on the problem of assembling
physical maps from fingerprinting data (see, e.g., [6], [12],
[13]), nowadays almost all physical mapping projects rely
on a software called FingerPrint Contigs (FPC) [27]. FPC
implements an algorithm called consensus band (CB) that
constructs a physical map using a combination of greedy
and heuristic approaches. At the core of the CB algorithm,
clones are assigned to contigs based on a coincidence
score, called Sulston score, which measures the probability
that two clones share a given number of restriction frag-
ments (bands) according to a simple probabilistic model
[28]. For each contig, the algorithm then builds a consensus
band map, which is a coordinate system to which clones
are aligned. Each distinct band represents one CB unit, and



the length of a clone on a CB map is the number of its
unique bands aligned to the CB map.

FPC does not attempt to resolve all the conflicts arising
in the assembly of the physical map, but instead provides
interactive features that expert users can employ for manual
editing. As it turns out in practice, manual editing is an
inevitable step in any physical mapping project. The man-
ual editing is tedious, very time-consuming and requires
a significant expertise. Clearly, the required amount of
manual intervention depends on the initial quality of the
physical map produced by the algorithm.

In an attempt to decrease the amount of manual work,
i.e., in order to produce more accurate maps, we propose
an alternative approach to the assembly that exploits the
presence of markers at the global level1. Typically, FPC
is run on the entire set of fingerprinted clones (approach
hereafter called standard method). Since fingerprinting
data obtained by band sizing from agarose gel or capillary
electrophoresis may be inaccurate, the standard method
often produces misassembled contigs. If markers are avail-
able, as it is usually the case in large genomic projects, a
compartmentalized assembly is possible. The main idea
is to try to assemble first and independently from each
other, subset of clones that are more likely to be truly
overlapping. The markers allow us to determine which
clones are more likely to be overlapping. In the physical
maps discussed in this paper, the markers are obtained by
hybridizing pools of short oligonucleotide probes to a BAC
clone library.

Given the popularity and the trust of the scientific
community in FPC, our algorithm relies on it and uses it as
a subroutine. First, FPC is run independently on each set of
BAC clones identified by the probes in each pool and then
intermediate assemblies are merged into a single assembly.
Second, clone-based and contig-based redundancies are
removed from the merged assembly. Third, we use both
FPC and a novel algorithm of ours to merge contigs
iteratively. FPC’s merge process is based on shared bands
between contigs, whereas our algorithm is based on shared
clones between contigs. The general strategy behind the
design of our assembler is “be conservative first”. For
example, in the beginning of the assembly we merge
contigs only if we are quite sure while later we allow
riskier moves.

In the experimental section, we report on the assembly
of the physical map of two plants, namely rice and bar-
ley. Real fingerprinting data is available for both plants.
Regarding markers, real hybridization data is available
for barley, while rice hybridization data was simulated in
silico. For both plants, we constructed the physical maps

1FPC can exploit the presence of markers only at a local level. When
two clones share a marker, they are merged using a higher cutoff than
the default.

using the standard and the compartmentalized method.
We compared the accuracy of the maps produced by

the two methods using a variety of evaluations. We also
compared these maps to the manually edited physical
maps of rice and barley. Our evaluations show that the
compartmentalized method produces significantly more
accurate maps than the standard method. In addition, our
method is capable of detecting and isolating clones which
induce chimeric contigs in the physical maps constructed
by the standard method.

II. The compartmentalized method

The first step in the compartmentalized method is to
run FPC independently on each subset of clones. Clones
in each subset (hereafter called clone sets) are clones that
contain some genetic marker, e.g., they are positive for a
pool of probes in some hybridization experiment. Clone
sets are not necessarily disjoint.

As stated, our compartmentalized method uses FPC as
a subroutine. Since FPC does not offer all of its functional-
ities in batch mode, we instrumented it so to enable batch
mode processing of functions such as END-MERGER,
DQER, and REBUILD-CONTIGS. Except for this, we did
not make any other modification to the internal code of
FPC. FPC’s key parameters such as cutoff, tolerance, and
fromEnd can be set by the user as usual.

The compartmentalized method consists of five phases,
as follow.

A. Initial contig assembly

(A1) Assemble clone sets. FPC’s BUILD-CONTIGS

procedure is run on the clones of each clone set, one
by one. This step generates a “mini” physical map (i.e.,
contigs and singletons) for each clone set.

(A2) Concatenate physical maps. Next, we concatenate
the files containing the maps corresponding to each clone
set into a single project. Recall that in general, clone sets
are not necessarily disjoint; however FPC cannot handle
multiple instances of a clone with the same name. In
this phase, we rename multiple copies of the same clone
occurring in distinct clone set maps, by adding a distinct
suffix. By the end of the assembly, this redundancy is
removed completely (i.e., all clones are unique). This
renaming process is transparent to the user, since clones
are eventually relabeled back to their original names.

B. Redundancy removal

Once all projects are concatenated into a single project,
there may be redundant clones as well as redundant



contigs. In this step, this redundancy is removed. Both
actions will be repeated in phase C and D.

(B1) Eliminate redundant contigs. A contig is called
redundant if all of its clones (excluding Q-clones) are
completely contained in another contig. Q-clones are
clones for which more than 50% of their bands do not
align to the CB map [23]. By computing the number
of common clones between all contig pairs, redundant
contigs are eliminated. In particular, if there are multiple
identical contigs, only one of them is kept alive. In this
step, all Q-clones that belong to a redundant contig are
moved to the singleton set.

(B2) Eliminate redundant clones. A clone is defined to
be redundant if either (1) it is a singleton and it also occurs
in a contig or (2) it occurs multiple times in the singleton
set or (3) it occurs multiple times in the same contig. All
redundant clones are reduced to one clone in this step.

C. FPC processing

In this phase, the main FPC procedures are run
iteratively on the merged project. Steps (C2)–(C6) are
repeated a few times until convergence. For more details
on FPC functionalities please refer to [23], [27].

(C1) Resolve Q-clones. We run the procedure DQER that
reduces the number of Q-clones in an attempt to split the
incorrectly merged contigs. DQER runs the CB algorithm
on contigs that contain more than q% of Q-clones, where
q is a user-supplied input parameter.

(C2) Merge contigs. We execute the procedure END-
MERGER that merges two contigs A and B if M distinct
pairs of end clones, one of which is in A and the other
in B, match each other with a Sulston score lower than
the cutoff value. A clone in a contig is an end clone if it
is within fromEnd CB units from one of the ends of the
contig, where fromEnd is a user-supplied input parameter
[22]. To avoid making wrong merges early in the process,
we run END-MERGER with increasingly lower values of
M (6 for the first iteration, 4 for the second, and 3 for
the following iterations).

(C3) Eliminate redundant contigs. See (B1)

(C4) Eliminate redundant clones. See (B2)

(C5) Rebuild contigs. We execute the procedure
REBUILD-CONTIGS at this point because END-MERGER

does not update the CB map (in FPC v8.0 or above [22]).
REBUILD-CONTIGS executes the CB algorithm on the

current version of the contigs in order to improve the
clone ordering.

(C6) Resolve Q-clones. See (C1)

D. Post-processing

In this fourth phase, a novel algorithm to merge contigs
is used and the redundancy present in the physical map is
removed completely. Step (D2)-(D4) are repeated a few
times until convergence.

(D1) Eliminate redundant Q-clones. A redundant
Q-clone is a Q-clone that occurs as a non-Q-clone in
another contig. The removal of redundant Q-clones is
performed only in this phase, since DQER resolves most
of the Q-clones in the main processing phase.

(D2) Merge contigs. Recall that END-MERGER merges
two contigs if a given number of their end clones overlap
with a Sulston score lower than the cutoff. However, in
the compartmentalized method, contigs may still share
several common clones. Clearly, contigs that share many
common clones should be merged. Our MERGE-SIMILAR-
CONTIGS algorithm works as follow. For all contig pairs
(c1, c2) for which S = c1 ∩ c2 "= ∅, the probability that
they share clones in S (according to an i.i.d. model) can
be obtained as follows

p(c1, c2) =

∏|S|
i=1

(fSi
2

)
.
( |M |−2|S|
|c1|+|c2|−2|S|

)

( |M |
|c1|+|c2|

)

where M is the multiset of all clones, and fSi is the
number of copies of the i-th element in S in the physical
map. Given these probabilities and a specified threshold
Tp, we build a directed acyclic graph G = (V,E), where
V is the set of contigs that share at least one clone with
some other contig, and E = {(u, v)|p(u, v) ≤ Tp and
|u| ≤ |v|}. When p(u, v) ≤ Tp and |u| = |v|, source and
destination of the edge are selected randomly. We merge
contig u to contig m(u), where

m(u) =
{

u if outdeg(v) = 0
m(argmin(u,v)∈Ep(u, v)) otherwise

MERGE-SIMILAR-CONTIGS is run until no further
merging is possible. As in step (C2), the threshold Tp is
increased at each iteration until it reaches a user-supplied
maximum (0 for the first iteration, 1e-30 for the second,
and 1e-15 for the following iterations).

(D3) Eliminate redundant contigs. See (B1)

(D4) Eliminate redundant clones. See (B2)



(D5) Move redundant clones to the singleton set. After
merging contigs, there may be still some clones that occur
in multiple contigs. Since the location of these clones in the
physical map is ambiguous, they are moved to the singleton
set.

E. Finalizing

In this phase, final adjustments are done on the physical
map. We reorder the clones and try to resolve any Q-clone
introduced in the last phase.

(E1) Rebuild contigs. See (C5)

(E2) Resolve Q-clones. See (C1)

F. Dataset

We used the genomic data of two plants, namely barley
and rice, to compare our compartmentalized approach to
the standard method.

For barley, HICF fingerprinting data was obtained as
part of our NSF funded project [20]. The total num-
ber of BAC clones that were successfully fingerprinted
is 47,499. About a dozen research groups around the
world contributed hybridization data, including our group.
We used OLIGOSPAWN [32] to design 12,467 36-mer
oligonucleotide (overgo) probes from a dataset of 53,799
barley unigenes [1]. A unigene is obtained as a product
of assembling several ESTs. Probes were grouped in 70
pools of usually 192 overgos each, with a maximum of 310
overgos in a single pool. In total there were 1,434 pools;
the vast majority were pools containing only one to a few
probes processed by colleagues at many locations using a
variety of methods, whereas the vast majority of probes
were contained in these 70 large pools using a uniform
method in our work [20]. The barley BAC library screened
against the pools of overgos is a Morex library covering
6.3 genome equivalents [31]. The average insert size is 106
kb. The average number of restriction fragments (bands)
is 92.

Since the barley genome has not been sequenced yet, we
had to resort to an organism with a known genome for our
comparative evaluations. We used the agarose gel-based
fingerprinting data and the manually edited physical map
of rice obtained from [2] for this purpose. The fingerprint-
ing data was real, but the hybridization data was simulated
in silico, as explained next. We used again OLIGOSPAWN

to design 36-mer unique overgo probes from rice unigene
dataset (build 62) obtained from NCBI [4] containing
46,381 unigenes. For about 70% of unigenes, at least
one unique overgo probe was designed. We generated 146
pools of rice overgo probes by randomly selecting 200

probes in each pool (except for the last pool, which had
55 probes). To model the hybridization, we decided that
if a probe had a perfect match to a BAC clone with 30
or more consecutive bases (out of 36), we considered it a
positive hybridization.

In order to carry out the hybridization of rice BAC
clones to overgo probes in silico, we obtained the se-
quences of rice clones indirectly by uniquely locating their
BAC end sequences (BES) on the rice genome. There were
59,430 rice BAC clones for which BESs were available
[3], but only 65% of them had both BESs sequenced.
We BLASTed the BESs against the rice genome (fourth
release [5]) and filtered out the low-scoring BLAST hits.
If a BAC clone had at least one pair of good BLAST
hits, it was selected for further analysis. For each selected
BAC clone, we checked all possible pairs of left and right
BES hits. The coordinates were assigned only when there
was only one pair for which (1) the hits were on the
same chromosome, (2) the distance between them was
consistent with the typical length of a BAC clone, and
(3) the orientations of the alignment for the two ends
are opposite to each other. If more than one pair met the
criteria (1-3), we declared that the location of that clone
in the genome could not be determined. Following this
procedure, we obtained 26,469 rice BAC clones for which
the sequence could be uniquely determined.

We verified the correctness of this procedure by match-
ing the sequences obtained by our method against the small
subset of 3,413 BAC clones sequenced by the International
Rice Genome Sequencing Project (IRGSP). When we
aligned the sequences obtained by our method against the
actual sequenced BAC clones using MUMmer [18], only
0.8% of the sequences turned out to be misaligned.

The final dataset of clones for which a sequence was
uniquely determined and the fingerprinting data was avail-
able contains 22,508 clones (about 10x genome equiva-
lence). The average insert size of these clones is 145 kb
and average number of bands is 29.

III. Experimental results and discussion

We applied both the standard and the compartmen-
talized methods to rice and barley data. The tolerance
parameter used in the compartmentalized assembler is
the same used in the standard method. This is because
the tolerance should be set according to the quality of
fingerprinting data [23] and both methods use the same
data. The cutoff value is also the same in both methods
because the cutoff only depends on genome size [26] and
genome composition [23]. We set the parameters in our
experiments based on the physical mapping project of rice
[9] and barley [20].



TABLE I. FPC statistics of standard, compartmentalized, and manually edited barley and rice physical
maps. a A Q-contig is a contig that contains at least one Q-clone. b Number of contigs that contain
at least 15% of Q-clones.

Clones Contigs Singletons Q-contigsa Q-contigb

Barley (Standard) 47,449 7,127 9,634 669 60

Barley (Compartmentalized) 47,449 7,246 13,984 433 20

Barley (Manual) 47,449 6,579 4,355 494 6

Rice (Standard) 22,486 1,918 860 8 0

Rice (Compartmentalized) 22,486 1,942 1,148 5 0

Rice (Manual) 68,531 179 2,661 0 0

A. FPC statistics

Table I shows some statistics about the standard, com-
partmentalized, and manually edited physical maps of
rice and barley. The manually edited physical map of
rice obtained from [2] contains more clones than the
standard/compartmentalized maps because in the latter we
used only the subset of clones for which a unique location
in the rice genome could be determined. The physical maps
of barley contain more Q-contigs (i.e. contigs that contain
at least one Q-clone) than the physical maps of rice mostly
because of the fingerprinting method as discussed in [22].

According to the statistics produced by FPC, the com-
partmentalized assembler produces physical maps which
contain less Q-contigs than the standard method. Since
the manual maps have been extensively edited by experts,
it is not surprising that it contains less contigs and Q-
contigs than standard/compartmentalized maps. We also
observe that for both plants, there are more singletons in
the compartmentalized physical map. More interestingly,
the singleton set in the standard map of rice is a subset of
the singleton set in the compartmentalized map. For barley,
about 92% of the singletons in the standard map are also
singletons in the compartmentalized map.

When we concentrated our attention on the extra sin-
gletons in the compartmentalized map of rice, we were
able to determine that 78.1% of these extra singletons
were misplaced in the standard physical map of rice
(see Section III-B for definition of a misplaced clone).
This statistics demonstrates that our method is capable of
detecting and isolating problematic clones.

B. Comparative evaluations of the physical
maps for rice

Since the coordinates of the clones on the rice genome
for the 22,508 selected clones in our library are known,

more precise comparative evaluations of the two methods
are possible for rice than barley. Next, we report on four
evaluation metrics to compare the maps produced by the
compartmentalized and the standard method, as well as
the manually edited map.

Evaluation I (Clone coordinates). We first cluster the
clones in each contig according to their locations in the
genome. For each contig, two clones are assigned to
the same cluster if they are on the same chromosome
and the distance between them is smaller than a given
threshold. We clustered the clones with several values of
the threshold (1 kb to 100 kb) and the results turned
out very similar (data not shown). This suggests that two
clones are assigned to different clusters usually because
they are on different chromosomes. In the following, we
show the evaluation results based on clone clustering with
1 kb threshold.

After clustering the clones in each contig, we compute
the cluster score which is defined as the percentage of
clones in the largest cluster. For example, a cluster score
of 90% means that 90% of the clones in a contig are on
the same chromosome and relatively close to each other.
Then, a cluster score for the whole map is computed as
the weighted mean of the cluster scores of all contigs in
the physical map, using the contig size (i.e., number of
clones in a contig) as the weighting factor. The cluster
score of each map is shown in Table II. According to
the weighted cluster score, the compartmentalized method
produces better maps than the standard method.

Once the clone clustering was completed, we also com-
puted the number of misplaced clones and misassembled
contigs in each physical map. If the large majority (70%
in this evaluation) of the clones in a contig belong to
a single cluster then we call misplaced the rest of the
clones. A contig is called misassembled if it contains
at least one misplaced clone. As shown in Table II, the



compartmentalized method produces a smaller number
of misplaced clones and misassembled contigs than the
standard method.

A further analysis on misplaced clones showed that the
set of misplaced clones in the compartmentalized rice map
is completely contained in the set of misplaced clones in
the standard rice map. The compartmentalized assembler
isolates 97.4% of the additional misplaced clones in the
standard map to the singleton set. This shows that our
method can detect and isolate clones that are otherwise
misplaced by the standard method. These latter misplaced
clones are usually the main responsible for connecting
contigs that should not be connected and creating chimeric
contigs.

We were unable to evaluate the manually edited
physical map, since most of the clones in this map cannot
be uniquely located in the rice genome.

Evaluation II (Clone order). It is well known that FPC
does not order clones within a contig very reliably [23].
Nonetheless, since we have the coordinates of rice clones,
we can compute an ordering score for each contig. We
define the ordering score of a contig as the absolute
value of Pearson’s product-moment correlation coefficient
between the ranking of its clones in the genome and the
order of its clones in the contig.

The rankings of clones in the genome are obtained from
their coordinates if they belong to the same chromosome.
If two clones belong to two different chromosomes then the
clone with lower chromosome number has lower ranking
than the ranking of the other. For this evaluation, we
computed a global ordering score as the weighted mean
of the ordering score of all contigs in the physical map,
using the contig size as the weighting factor.

The results in Table II show that the compartmentalized
method produces contigs where the clone ordering is
better than the standard method, probably due to the
smaller number of misplaced clones and misassembled
contigs.

Evaluation III (Minimal tiling path). As mentioned
in the introduction, the minimal tiling path (MTP) of a
physical map is a critical component in many genome se-
quencing projects. Thus, the overall quality of the MTP is
a good metric to evaluate physical maps. In this evaluation,
first we computed an MTP for both the standard and the
compartmentalized physical maps by using the most recent
version of FPC (v8.5.3 as the time of writing) with default
parameters. Then, we compared the number of the MTP
clones, the coverage of the MTP clones on the genome,
and the percentage of the consecutive MTP clones that
truly overlap on the genome.

The results shown in Table III illustrate that both maps

use essentially the same number of clones, but the MTP
of the compartmentalized physical map covers almost
1% more of the genome than the MTP of the standard
physical map. We also observe that in the physical map
obtained by the standard method a higher number of
the consecutive MTP clones do not overlap on the genome.

Evaluation IV (Overlapping clones). In our final eval-
uation, we focus on the set of overlapping clones on
the genome. For each pair of clones that are actually
overlapping, we check whether they are in the same contig
(counted as true positive) or not (counted as false negative).
More precisely, only clones that overlap by at least 100
kb are considered in the evaluation. Because, given the
parameter set we used, FPC can possibly join two clones
if they overlap by at least 70% of their length (100 kb
is approximately 70% of their average clone length) [23].
If one or both clones are in the singleton set, this pair is
added to the singletons count.

The results in Table IV show that for rice although
the true positive rate in the standard map is a little
higher than the compartmentalized map, the former suffers
from a much higher false negatives rate. Note that the
2% additional false negatives in the standard map are
“moved” to the singleton set by the compartmentalized
assembler, as we argued previously. We also observe that
the manually edited physical map is much better than the
compartmentalized and the standard physical maps. This
is not surprising given that the manually edited physical
map of rice has been curated for more than five years.
Furthermore, one should keep in mind that this measure
favors physical maps with smaller number of contigs. In
the extreme case, a physical map in which all clones were
assigned to one single contig would beat all the maps
shown here according to this evaluation.

C. Evaluation results for the physical map
of barley

Since the barley genome has not been sequenced yet,
none of the evaluations explained above can be carried
out. We were able, however, to obtain a small dataset from
Institute of Plant Genetics and Crop Plant Research (IPK)
that gives about 140 lists of BAC clones that hybridized
to a single oligonucleotide probe. Some of the pools that
we used in the physical mapping consisted of only one
probe. By using the BACs identified by the probes in these
pools, we were able to extent the dataset to 239 lists. The
assumption is that all the clones in each list should overlap.

For each clone set that is identified by a probe, we
first computed the contig ID that contains majority of
the clones in the set. Then for all clones in the set, we
computed the number of clones that were either in that



TABLE II. Global ordering and cluster score of the standard and the compartmentalized physical
maps of rice.

Cluster score Misplaced clones Misassembled contigs Ordering score

Standard 96.43% 675 493 0.8252

Compartmentalized 97.56% 444 356 0.8426

TABLE III. A comparison among standard, compartmentalized, and manual physical maps of rice
based on their MTPs. “True overlaps” represents the percentage of consecutive MTP clones that
overlap on the genome. c Since we do not have coordinates for about 50% of the MTP clones, we
could not compute the actual coverage.

MTP clones Coverage (%) True overlaps (%)

Standard 2,791 84.90 84.31

Compartmentalized 2,792 85.24 86.94

Manual 3,365 N/Ac 86.00

TABLE IV. Evaluation results for standard, compartmentalized, and manually edited physical maps
of rice (based on overlapping clones) and barley (based on genetic markers).

True positive (%) False negative (%) Singletons (%)

Rice (Standard) 88.91 8.53 2.56

Rice (Compartmentalized) 88.61 6.46 4.94

Rice (Manual) 92.09 7.26 0.65

Barley (Standard) 73.69 12.26 14.05

Barley (Compartmentalized) 71.90 8.56 19.54

Barley (Manual) 83.91 11.11 4.98

contig (counted as true positive), or in another contig
(counted as false negative), or in the singleton set. This
evaluation is very similar to the one based on overlapping
BAC clones performed for rice. However, in this case the
dataset is not as reliable. BAC clones identified by the same
probe may not necessarily be overlapping (for instance,
if BAC clones overlap a repeat region or a gene family).
Although this evaluation is not very reliable, it is still rather
informative, since it is not biased toward any map.

The results shown in Table IV for barley illustrate
that the compartmentalized map has fewer errors than the
standard map. There are about 1.8% extra true positives
in the standard map, but about 3.5% more false nega-
tives than the compartmentalized map. In other words,
the compartmentalized method is able to isolate some
clones to the singleton set that are otherwise misplaced
by the standard method. Although the true positive rate of
the manually edited map is higher than the true positive
rate of the compartmentalized map, the compartmentalized

map has less errors than the manually edited map. This
suggests that starting the manual editing process from
the compartmentalized map would reduce considerably the
manual intervention.

IV. Conclusions

We proposed a novel compartmentalized approach to
the construction of physical maps from fingerprinted
clones. The compartmentalized method exploits globally
the presence of genetic markers and constructs more
accurate physical maps. Consequently, we argue that the
compartmentalized method reduces the amount of manual
editing that is an inevitable step in any physical mapping
project. Additionally, we showed that the MTP produced
from the compartmentalized physical map is more reliable,
and that should help clone-by-clone sequencing projects.
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