
 1

Architectural Analysis of OpenSSL Crypto Algorithms for Network Processor

Piyush Ranjan Satapathy

Department of Computer Science & Engineering

University of California, Riverside

Riverside, CA 92521

piyush@cs.ucr.edu

Abstract

The wide spread adoption of the internet as a trusted

medium of communication and commerce has made

cryptography an essential component of modern

information systems. So the performance of

cryptographic communication applications on network

processor has become an important topic of network

processor system design. In this paper I compare and

analyze the architectural characteristics of some wide

spread cryptographic algorithms and their

implementations through simulation on Simple Scalar,

a MIPS like architecture. I have compared the

instruction mix of the OpenSSL crypto algorithms with

that of the SPEC95, CommBench and Average kind of

algorithms. Also I have given a clear comparison of

the average computational complexity per byte

between the OpenSSL crypto algorithms and the

others. Then considering 7 of these crypto algorithms

(1 stream cipher type,3 block cipher type and 2 hash

type) i have analyzed the impact of various cache

sizes, different kind of branch predictions, different

number of ALUs, and different Instruction fetch queue

sizes. I find that memory system has a significant

effect on overall performance. An ILP of 8,128 KB

Instruction cache size and 32 KB Data cache size and

direct mapping give better cryptographic operation for

OpenSSL crypto algorithms. Cache replacement

strategy doesn’t have an importance in overall

performance.

1. Introduction

In an increasingly connected world, cryptography has

become an essential component of modern information

systems. Cryptography provides the mechanisms

necessary to provide accountability, accuracy and

confidentiality in inherently public communication

medium such as the internet. Today cryptography

processing is primarily reserved for electronic

commerce transactions and secure e-mail, however the

adoption of Virtual private Networks (VPNs) [7],

secure IP (IPSEC) [8], Transport Layer security (TLS)

[6] and Security Socket Layer (SSL) [5] will subject

more of all communication to cryptographic

processing. As secure communication bandwidth

demands continue to grow, so too will the importance

of efficient cryptographic processing. In this paper I

focus on SSL protocol based on the open source called

OpenSSL [2].

SSL protocol has been widely used in highly secure

applications like e-commerce and banking systems. Li

Zhao et. al [3] analyzed the SSL performance in secure

web transactions. By presenting a detailed description

of the anatomy of SSL processing they contributed

architectural characteristics of crypto operations. They

analyzed the CPI, path length and frequently used

instruction in these crypto operations. They also

presented an ISA/hardware support to improve the

SSL processing. However the detailed architectural

analysis of the SSL crypto operations has not been

done.

On the other hand, the emerging network processors

(NPs) which are application specific programmable

processors will become fundamental building blocks

of next generation networking equipments. Network

processor can provide high and flexible packet

processing and have been targeted for diverse

application domains. Network processors are mainly

designed and improved for high and flexible packet

processing such as packet forwarding based on routing

tables at wire speed. However they are targeted not

only for packet processing applications. As demands

for communication security grow cryptographic

processing becomes another type of application

domain. To make network processor flexible for

diverse application domains, we need study the

architectural requirements of each domain, especially

cryptographic application domain. The bandwidth of

internet links and the packet processing power of

network processors have been increasing very quickly

in the past few years. To meet the increasing demands

for secure communication, the network processors

have to performance cryptographic functions at the full

speed to achieve comparable performance of security

processing. The impact of security related functions

performed on the network processors is still not clearly

known to us.

 2

Compared to studies on architectures and

applications of packet processing power provided by
network processors, little research has been conducted

on the architectural requirements for cryptographic

applications for processor designs. Haiyong Xie et. al.

[4] have analyzed the architectural characteristics of

crypto operations of Average algorithm and have

proposed an acceptable architecture for cryptographic

application specific uses which is quite different from

the architecture of packet processing application

specific processor. However keeping the view of SSL

protocol and openly available SSL crypto algorithms, i

intended to study the same architecture characteristic

analysis and to study if there is a need for a different

architecture for SSL type of crypto algorithms.

In this paper I considered 2 types of cryptographic

applications; namely block ciphers and stream ciphers.

The other forms of cryptography such as hash

algorithm and public-key ciphers have not been

studied yet. Through detailed timing simulation and

profiling, I find that the cryptographic applications

demonstrate different architectural properties than [4]

.The architectural properties I studied include

Instruction set characteristics, instruction level

parallelism (ILP), and cache performance. I find that

the instruction mix of the SSL cryptography operation

consists of 60% arithmetic instructions and around

40% of memory reference instructions, and much

lower percentage of branch predictions compared to

SPECint95 [9], CommBench[10] and Average Crypto

[4] .So the high precision branch prediction

mechanism is not a need here. However as the average

size of the blocks is larger than SPECint95,

CommBench and Average Crypto, it is possible to take

the advantage of instruction level parallelism much

better. I see that an ILP of 8 holds good for most of the

time as same to [4]. Compared to ILP, cache

architecture have much significant effect on the overall

performance as opposed to [4].I see that an instruction

cache of 128 KB and a data cache of 32 KB are

enough for most of the application not as the same as

16 KB in [4].Cache replacement strategy doesn’t

provide much improvement on the overall

performance.

The above result will guide towards designing a

special network processor for SSL crypto processing

which is quite different from other crypto operations.

The rest of the paper is structured as follows. Section 2

describes the selection of cryptographic algorithms.

Section 3 describes the simulation environment and

methodology. Section 4 represents the instruction set

characteristics and instruction mix profile of these

applications. Section 5 describes the computational

complexity of cryptographic programs, measured by

the number of cycles spent in processing 1 byte data.

Section 6 represents the instruction level parallelism

properties. Section 7 shows the branch prediction

properties. Section 8 deals with the cache behavior.

Section 9 summarizes the contributions of this work

and concludes the paper.

2. Selection of SSL Cryptographic Applications

As my main aim is to run the OpenSSL crypto

algorithms and analyze the architecture, I have chosen

the algorithms according to the availability in the open

source of OpenSSL version -0.9.7e. Also, the most

important criteria of selection of cryptographic

algorithms and their implementations for architectural

analysis is the representativeness of a wider

application class in the domain of interest. There are

two such application domains: hash algorithms and

private key ciphers, the latter of which includes block

ciphers and stream ciphers. Cryptographic applications

in these domains are all widely used in Internet

applications. The third criteria is the popularity and

availability of the algorithms. Widely used algorithms

favor over less used ones. Most of these cryptographic

algorithms are employed in popular protocol suites

such as SSL and applications such as PGP. With these

in mind, i choose 7 algorithms and their

implementations for analysis. Four of them are block

ciphers; One of them is data stream processing and

other two are hash algorithms.

2.1 Block Ciphers:

The majority of the encryption algorithms in

use today are block ciphers. They take blocks of data

(typically 64 bits or 128 bits) as input and only encrypt

the blocks separately. The summaries of selected block

ciphers are shown in Table 1. I have chosen 4 block

cipher types such as; 1.AES, 2.DES, 3.3DES, 4.IDEA

2.1.1 AES

AES (Advanced Encryption Standard), which

is also named as Rijndael [11], is the standard of AES

[12]. It has a variable key size of 128, 192 or 256 bits.

The symmetric and parallel structure of this algorithm

gives implementers a lot of flexibility, and has not

allowed effective cryptanalytic attacks. AES can be

well adapted to a wide range of modern processors

such as Pentium, RISC and parallel processors. AES

has been put into wide use up to now. One of the

examples is DMSEnvoy developed by Distributed

Management System Ltd.

 3

 AES is a substitution-linear transformation

network with 10, 12 or 14 rounds, depending on the

key size. A data block to be encrypted by AES is split

into an array of bytes, and each encryption operation is

byte-oriented. AES's round function consists of four

layers. In the first layer, an 8x8 S-box is applied to

each byte. The second and third layers are linear

mixing layers, in which the rows of the array are

shifted, and the columns are mixed. In the fourth layer,

sub key bytes are XORed into each byte of the array.

In the last round, the column mixing is omitted. So the

algorithm consists of 4 main steps: a substitution step,

a shift row step, a mix column step and a sub key

addition step. The substitution step consists of Sboxes.

The shift row step consists of a cyclic-shifting of the

bytes within the rows.The key addition is straight

forward XOR operations between the data and the key.

Fig1. (Architecture of Advanced Encryption

Standard Data path)
Here I have chosen AES algorithm of key length of

128 bits and of cipher block chaining (cbc) encryption.

2.1.2 DES

 The Data Encryption Standard (DES)

cryptographic algorithm is based on a 128-bit block

algorithm developed in the 1960s by IBM. It was

designed to use a 64-bit key to encrypt and decrypt 64-

bit blocks of data using a cycle of permutations,

swaps, and substitutions. Encryption and decryption

use the same key. A block to be encrypted is subjected

to an initial permutation, then to a complex key-

dependent computation, and then to a final

permutation. The initial and final permutations take

the 64-bit block and change the position of each bit in

a pre-determined manner. The final permutation is the

reverse of the initial permutation. A DES key consists

of 64 binary digits of which 56 bits are randomly

generated and used directly by the algorithm. The

other 8 bits, which are not used by the algorithm, are

used for error detection. The 8 error detecting bits are

set to make the parity of each 8-bit byte of the key

odd, i.e., there is an odd number of "1"s in each 8-bit

byte. DES can operate in different modes like ECB

(electronic Code Book), CBC (Cipher Block

Chaining), CFB (Cipher Feedback), and OFB (Output

Feedback). Here I have chosen the CBC kind of

encoding using the 128 bits of key length.

Fig2. (DES Block Diagram)

2.1.3 3DES

 3DES [13] achieves a high level of security by

encrypting the data three times using DES with three

different, unrelated keys. Therefore, 3DES use a larger

size of key to encrypt than that of DES. The larger the

key, the harder the cipher can be broken.

Fig3. (Basic 3DES algorithm Block Diagram)

The block of plaintext is split into two halves (L0,R0).

each of which is 32 bits long. Also DES uses the

original 56 bit key to generate 16 keys of 48 bits each

(ki). These sub keys are used in the 16 rounds. In each

round, the function F is applied to one half using a sub

key ki and the result is XORed with the other half. The

two halves are then swapped and the process is

repeated. All the rounds follow the same pattern

except the last one, where there is no swap. The final

 4

result is the cipher text (Lr,Rr). Hence the plaintext

(L0,R0) is transformed to (Lr,Rr). In 3DES, we apply 3

stages of DES with a separate key for each stage. So

the key length in 3DES is 168 bits. I have chosen the

3DES algorithm with CBC kind of chaining and with

168 bits. Because the CBC is the most common mode

of using DES/3DES. The CBC mode is represented

below.

Fig4. (CBC Mode of Operation of DES/3DES)

2.1.4 IDEA

IDEA [14] is generally regarded as one of the

best and the most secure block ciphers available to the

public today. It uses 128-bit keys and operates on 64-

bit data blocks. Another reason for selecting IDEA is

that it is, on average, much faster than many other

ciphers.

IDEA uses 52 sub keys, each 16 bits long. Two are

used during each round proper, and four are used

before every round and after the last round. It has eight

rounds. The plaintext block in IDEA is divided into

four quarters, each 16 bits long. Three operations are

used in IDEA to combine two 16 bit values to produce

a 16 bit result, addition, XOR, and multiplication.

Addition is normal addition with carries, modulo

65,536. Multiplication, as used in IDEA, requires

some explanation. Multiplication by zero always

produces zero, and is not invertible. Multiplication

modulo n is also not invertible whenever it is by a

number which is not relatively prime to n. The way

multiplication is used in IDEA, it is necessary that it

be always invertible. This is true of multiplication

IDEA style. Let the four quarters of the plaintext be

called A, B, C, and D, and the 52 sub keys called K(1)

through K(52). Before round 1, or as the first part of it,

the following is done: Multiply A by K(1). Add K(2)

to B. Add K(3) to C. Multiply D by K(4).Round 1

proper consists of the following: Calculate A xor C

(call it E) and B xor D (call it F). Multiply E by K(5).

Add the new value of E to F. Multiply the new value

of F by K(6). Add the result, which is also the new

value of F, to E. Change both A and C by XORing the

current value of F with each of them; change both B

and D by XORing the current value of E with each of

them. Swap B and C. Repeat all of this eight times, or

seven more times, using K(7) through K(12) the

second time, up to K(43) through K(48) the eighth

time. Note that the swap of B and C is not performed
after round 8.Then multiply A by K(49). Add K(50) to

B. Add K(51) to C. Multiply D by K(52). The

intricacies of IDEA encryption may be made

somewhat clearer by examining the following

diagrams:

Fig 5a. (Details) Fig 5b. (Overview)

I have chosen the IDEA algorithm with 128 bits

of key length and of CBC kind of operation.

Table 1: Selection of Block Ciphers

Type Designer Key

Length(Bits)

Block

Size

(Bits)

AES Rijmen 128,192,256 16

DES Coppersmith 128 8

3DES IBM 168 8

IDEA Massey 128 8

 5

2.2 Stream Ciphers

 Compared with block ciphers, stream ciphers

take data of variable length as operation objects. They

use random numbers as the keys, which are combined

with the plain text to generate the cipher text. The

better the keys are randomly generated, the more

secure the stream cipher is. The summaries of selected
stream ciphers are presented in Table 2. I have chosen

only 1 stream cipher i.e. RC4.

2.2.1 RC4

RC4 is a variable key-size (up to 2048 bits)

stream cipher developed by Ron Rivest for RSA Data

Security, Inc. The algorithm is very fast. Its security is

unknown, but breaking it does not seem trivial either.

Because of its speed, it may have uses in certain

applications such as Lotus Notes and Oracle Secure

SQL.

Fig 6. (Block Diagram of RC4 Stream Cipher)

RC4 uses a variable length key from 1 to 256 bytes to

initialize a 256-byte array. The array is used for

subsequent generation of pseudo-random bytes and

then generates a pseudorandom stream, which is

XORed with the plaintext/ciphertext to give the

ciphertext/plaintext It works in Output Feedback

(OFB) mode [15] of operation. There are two 256-byte

arrays, S-Box and K-Box. The S-array is filled

linearly, such as S0=0, S1=1, S2=2, ..., S255=255. The

K-array consists of the key, repeating as necessary

times, in order to fill the array. The RC4 stream cipher

works in two phases. The key setup phase and the

pseudorandom key stream generator phase. Both

phases must be performed for every new key. Here I

have chosen the OpenSSL RC4 algorithm with a key

length of 128 bits and in OFB mode.

Table 2: Selection of Stream Ciphers

Type Designer Key Application

Length(Bits)

RC4 Rivest 8 to 2048

multiple of 8

bits; default

128 bits

SSL

2.3 Hash Algorithms

Hash algorithms are fundamentals to many

cryptographic applications. Although widely

associated with digital signature technology, the hash

algorithm has a range of other uses. SHA-1 and MD5

are amongst the most widely known, trusted and used
As OpenSSL has these two algorithms I have chosen

both of them.

2.3.1 MD5

MD5 [16] is an accepted standard for message

digest. It generates an output of 128-bit message digest

of the input. It is conjectured that it is computationally

infeasible to produce two messages having the same

message digest. The MD5 algorithm is commonly

used for digital signature applications, where a large

file must be "Compressed" in a secure manner before

being encrypted with a private key under a public-key

cryptosystem. MD5 is much more reliable than

checksum and many other commonly used methods.

Fig7. (Block Diagram for the MD5 Megafunction)

This megafunction is a fully compliant hardware

implementation of the MD5 Message-Digest

Algorithm, suitable for a variety of applications. It

computes a 120-bit message digest for messages of up

to (264 – 1) bits. MD5 algorithm operates on message

blocks of 512 bits for which a 128-bit (4 by 32-bit

word) digest is produced. Corresponding 32-bit words

of the digest from consecutive message blocks are

 6

added to each other to form the message of the whole

message. Here I have chosen digest size of 128 bits

and block size of 512 bits.

2.3.2 SHA1

 SHA1 [17] is specified within the Secure Hash

Standard (SHS) for using with Digital Signature

Standard (DSS). It has a greater hash size than MD5,

so it is more secure. It generates 160-bit digest, which

is large enough to protect against “birthday” attacks.

Fig 8. (Elementary SHA operation: single Step)

Fig9. (SHA1 processing of a Single 512-bit

Block)

I have chosen the SHA1 algorithm from OpenSSL

source with 512 bits of block size, and 160 bits of

digest size.

Table 3: Selection of Hash Algorithms

Type Designer Block

Size(Bits)

Digest

Size(Bits)

MD5 Rivest 512 128

SHA1 USA

Security

Agency

512 160

3. Simulation Environment

In this paper I focus the architectural properties of

above described cryptography applications. I collected

the above said algorithms from OpenSSL-0.9.7e [2].

After creating the library i made the separate codes for

self execution for each of the 7 algorithms. Then i

ported and ran them in the execution driven simulator,

SimpleScalar version3.0 [1]. The SimpleScalar tool set

is a suite of publicly available simulation tools that

provides fast, flexible, and accurate simulation of

modern processors that implement the SimpleScalar

architecture, which is a close derivative of the MIPS

architecture. The C compiler used is gcc 2.7.2.3

(optimization level O2) coming with SimpleScalar.

The O2 optimization level is selected for the reason

that the compiler only performs optimizations that are

independent of the target processors and does not

exploit particular architectural features.

The algorithms are executed with a relatively large

text file of 260 KB as well as a small file of 1byte. A

key of 128 bits is used with all the block and stream

ciphers except 3DES, which is executed with a key of

168 bits and 160 bits respectively. The default

configuration of the simulated processor architecture

has a L1 instruction cache and a L1 data cache, a

unified L2 cache, an ILP of 4, and bimodal as the

branch prediction algorithm. The L1 caches have 4-

way set associative, 32-byte line size, LRU

replacement strategy, and 16KB in size. The unified

L2 cache has 4- way set associative, LRU replacement

strategy, 64-byte line size, and 512KB in size. This L1

and L2 cache configuration are the same as that of

PentiumII microprocessors.

Table 4: Simulator Parameters

Type Default values Variable parameters

Processor

Speed

2.4 GHz NIL

Fetch

Width

8 Instructions 1,2,4,8,16,32

Pipeline 11 NIL

 7

Depth

Functional

Units

6IntALU,6IntMult,

2FpALU,2FpMult

IntALU:1,2,4,8

FpALU:1,2,4,8

Issue

Width

8Int, 4Fp NIL

Issue

Queue

Size

64 Int, 32Fp NIL

Load/Store

Queue

Size

64 LQ, 64 SQ NIl

Branch

Predictor

Bimodal Not Taken, taken, 2level,

bimodal, combinational

Branch

target

buffer

1K Entry, 4way NIl

Branch

mispredict

penalty

9 NIL

L1

Instruction

Cache

64KB, 2way,

32byte Block line,

1cycle latency, l

replacement policy

� change the cache

size:4,8,16,32,64,128,256

KB

� Change the Block

Size: 8,16,32,64 bytes

� Set Associativity:

1,2,4,8,16

� Replacement Policy: l,

f, r

L1 Data

Cache

64KB, 2 way,

64byte Block line,

l replacement

policy

� Cache size:

4,8,16,32,64,128,256 KB

� Block Size:

8,16,32,64 bytes

� Set Associativity:

1,2,4,8,16

�Replacement Policy:l,

f, r

L2 Cache 512 KB, 2Way,

64B Line,

NIl

L3 Cache 4Mb, 4 Way, 64B

line

NIl

UL2

unified

Cache

1024 KB, 4 Way, l

replacement,64

Byte line size

ILP of 4.

� Cache Size: 4,8,16,32,

64, 128, 256, 512, 1024,

2048

�Replacement Policy: l,

f, r

4. Instruction set characteristics

 The instruction set characteristics give an

indication on the types of instructions executed and

their frequencies in the programs. Figure 10 presents

the instruction mix profile and frequencies for the

implementations of all the selected algorithms,

SSLcrypto algorithms, averages algorithms [4],

SPECint95 programs and CommBench programs. The

average instruction mix of these cryptographic

programs shows great differences from that of both

SPECint and CommBench programs.

Instruction Mix Comparison

0%

20%

40%

60%

80%

100%

SSLCypto Average SPECint CommBench

P
e
rc
e
n
ta
g
e
%

load store uncond. branch cond. branch int computation

 Fig10(a).Comparisons of instruction mix

Block,Stream & hash Algorithm Instruction Mix

0%

20%

40%

60%

80%

100%

AES DES 3DES RC4 IDEA MD5 SHA1

P
e
rc
e
n
ta
g
e
 %

Load Store Cond. Branch Int Computation

Fig10(b).Block and Stream Ciphers Instruction

mix

Figure 10(a) depicts the averages of block ciphers,

stream ciphers, hash algorithms of OpenSSL named as

SSLCrypto. The “Average” shows that of [4]. The

following points out the differences: 1).The

SSLCrypto has higher percentage of arithmetic

instructions than CommBench and SPECInt and lower

than the Average. It is clear from the above graph that

the SSLCrypto applications are more computational

intensive than SPECInt and CommBench but less than

Average. This computation may consume most of the

network processor’s computation power. (2).The

SSLCrypto has significant amount of memory

reference compared to Average algorithms. As

opposed to [4], here It means that SSLCrypto

applications are more or less memory reference

bounded and that we may need a less complicated

memory system with significant amount of hit rate.

(3).The SSLCrypto programs have much lower

percentage of branch instructions, which is 3.42% in

average compared to 20% of SPECint95. The sharp

difference in the conditional branch instruction

frequencies makes it unnecessary to employ

complicated branch prediction mechanisms. In the

 8

following sections we also study the branch prediction

requirements for these cryptographic applications.

Figure 10(b) shows the instruction mix profile for

block ciphers, stream ciphers, and hash algorithms.

The following observations are important: (1). Among

all the selected block ciphers, only DES and 3DES

have similar and high percentage of memory reference

instructions (45% and 47% respectively) compared to

SPECint95 programs (35% in average). Thus these

two applications have higher requirements on the L1

data cache architectures, as is proved by the studies of

cache behaviors. (2). Among all the selected block

ciphers, IDEA has similar percentage of conditional

branch instructions (11%) compared to SPECint95
programs (17% in average). This potentially means

that IDEA implementation may need better branch

prediction mechanisms with higher hit rate to achieve

good performance. However, in later section dealing

with branch prediction properties, it is learned that it is

still not necessary to employ such mechanisms for

IDEA applications. (3).The selected stream ciphers

and hash algorithms have quite different instruction

mix properties from SPECint95. They all have

significant percentage of both memory reference (up to

25% each) and higher percentage of arithmetic

instructions. (4).Stream ciphers are more similar to

hash programs in terms of instruction mix. Block

ciphers are quite different from both stream ciphers

and hash programs.

5. Computational Complexity

This section shows the computational

complexity measured in terms of the number of cycles

spent per byte of the input data for each of the selected

programs. Figure 11 depicts the computational

complexity for each of the block ciphers, stream

ciphers and hash algorithms. We can see that 3DES

spends much more cycles than all other ciphers in

processing one byte data. This is because 3DES

applies the same data manipulation process three times

with three different keys. The computational

complexity is thus tripled. AES has a relatively high

computational complexity compared to the other 3

ciphers. Compared to block ciphers, stream ciphers

and hash programs need much less cycles to process

one byte data as shown in the figure. Stream ciphers

exhibit more like hash algorithms rather than block

ciphers in perspectives of cycles spent per byte

operation.

Computational Complexity of the algorithms per

Byte

0

10

20

30

40

50

60

70

80

90

AES DES 3DES RC4 IDEA MD5 SHA1

1
0
0
0
 C
y
c
le
s

Fig11. Computational Complexity of the

selected Algorithms

6. Instruction Level parallelisms

 Instruction level parallelism is a crucial issue

for consideration. We can exploit instruction level

parallelisms to achieve high performance for these

computationally intensive cryptographic applications.

To study the ILP properties of these applications, we

verify the number of ALUs, the size of instruction

fetch queue, and both, to see the separate and

combined contributions of each component. We did

not consider the decoder and issue units and we simply

set the number of these resources to their maximum

value so that they do not have any impact on the

performance. Figure 12(a) shows the impact of

changing the number of integer ALUs keeping the

default value of FP ALUs. The size of instruction fetch

queue is set to its maximum number available to

eliminate the affect. It is observed that the number of

instructions that can be executed in one cycle increases

by 26%, 37%, and 40% for Block, stream and hash

kind of algorithms respectively when the number of

ALUs increases from 1 to 2, and by 6%, 10%, and 5%

when the number of ALUs increases from 2 to 4.

However, with more than 4 ALUs, the number of

instructions executed in one cycle increases only less

than 1%.

Average ILP with different Number of Integer

ALUs

0

0.5

1

1.5

2

2.5

3

1 2 4 8

ALU

In
s
tr
u
c
ti
o
n
 P
e
r
C
y
c
le

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig12(a). Impact of ALU on Average ILP

 9

Figure 12(b) shows the separate contribution of

instruction fetch queue to the overall performance

measured by instructions executed per cycle. The

number of ALUs is set to its maximum value in order

to eliminate the affect of ALUs. From the figure it is

observed that an instruction fetch queue of size 4 is

enough for all cryptographic applications. The number

of instructions executed per cycle increase by 26%,

37%, and 40% for block, stream and hash kind of

algorithms respectively after the size of the instruction

fetch queue changes from 1 to 2. And the same

increases as 6%, 10% and 5% respectively if the

instruction fetch queue changes from 2 to4. After that,

the performance improvement is less than 2% when

we double the size of the queue.

Impact of Instruction fetch Queue on Average ILP

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

IFQ Size

In
s
tr
u
c
ti
o
n
 P
e
r
C
y
c
le AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig12(b). Impact of IFQ on average ILP

Figure 12(c) depicts the overall impact of functional

unit resources available, that is, the number of ALUs

and the size of instruction fetch queue. We use ILP to

represent the changes of functional unit resources, for

example, an ILP of 8 means that the processor has an

instruction fetch queue of size 8 and 8 integer ALUs

and 8 FP ALUs available. It has been seen that the

performance measured by the number of instructions

executed per cycles increases linearly as ILP increases

from 1 to 2 to 4. The performance improvement is less

than 1% when ILP increases from 4 to 8. From these

figures we conclude that an ILP of 4 is enough and the

most cost effective for achieving the best performance

for the selected cryptographic applications.

Overall Impact of ILP

0

0.5

1

1.5

2

2.5

3

1 2 4 8

ILP

In
s
tr
u
c
ti
o
n
 P
e
r
C
y
c
le AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig12(C). Overall Impact of ILP

7. Branch Prediction

 Branch prediction does not seem to be as

important as instruction level parallelisms. One of the

reasons has been stated in Section 4: the percentage of

conditional branch instructions is low in cryptographic

applications. Even if the miss prediction rate is high,

the effect of this miss prediction is still not so serious

to the overall performance. Another consideration is

what kind of branch prediction mechanism is best

suitable to cryptographic programs. Figure 13 presents

the prediction hit rate of each prediction mechanism

available in the simulator for all the crypto

applications I have considered. It can be observed

from Figure 13 that most of the conditional branches

are either bimodal or combinational or 2level.Each

kind of these branch prediction gives us a Hit rate

more than 60%. Therefore, sophisticated branch

prediction mechanisms like Bimodal or Combinational

or 2level are some short of requirement for these

cryptographic programs. A simple static branch

prediction mechanism with the branches being

predicted always taken or not taken may not be

sufficient.

Branch prediction Hit Rate

0

10

20

30

40

50

60

70

80

90

100

AES DES 3DES RC4 IDEA MD5 SHA1

H
it
 R
a
te
 %

Not Taken

2 Lev

Taken

Comb

Bimod

Fig13. Average Branch Prediction Hit Rate

 10

8. Cache Behaviors
 Cache behaviors are other important

considerations for the design of network processors.

From Section 4, it is found that the memory reference

instructions account for around 45% of all the

instructions executed for cryptographic programs. This

means that proper cache architecture is required for

most of the security related applications. We measure

the cache performance for each of selected

applications. Separate instruction and data caches

ranging from 4KB to 256KB are simulated.

8.1 L1 Instruction Cache Behaviors
 Figure 14 shows the results for instruction

cache behaviors by changing such cache parameters as

cache size, line size, set associative, and replacement

strategy. Figure 14(a) presents the simulation results of

cache performance when the cache size is changed. It

can be seen that these crypto algorithms require a big

L1 cache size for getting a very low miss rate. L1

instruction Cache size of 128 KB is enough to achieve

miss rates at the lowest value possible for all the three

kind of algorithms. This figure also shows that the

miss rate of all the three kind of algorithms cannot be

reduced even with much larger cache sizes due to

compulsory misses. Compared to benchmark programs

of CommBench, cryptographic programs have larger

kernels. For CommBench programs, the instruction

cache miss rates are lowered to under 0.5% when

the instruction cache is increased to 8KB;

however, the miss rates are as higher as 2% with

the same cache size for the selected programs.

Even when the cache size is 16KB, the lowest

miss rate of the programs is still approximately

1%, which is 4 times higher than that of

CommBench programs. The instruction cache

behaviors of cryptographic programs are much

more different with that of SPECint programs,

which have an average miss rate of 2.2% and 1%

for 8KB and 16KB instruction caches

respectively.

Impact of cache Size on Miss Rate

0

2

4

6

8

10

12

14

4 8 16 32 64 128 256

Cache Size (KB)

M
is
s
 r
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig14(a). Impact of Cache Size

In figure 14(b), when the line size of instruction cache

is increased, the miss rate is lowered for all the

applications. The line size increase has greater impact

on all kind of crypto algorithms. It is seen that a line

size of 32 bytes is enough for block, stream and hash

kind of ciphers to achieve miss rates less than 10% at a

lower constant level. However it is observed that after

32 bytes if we increase more there is very little effect

on the miss rate and it doesn’t help much.

Impact of Block Size on Miss rate

0

5

10

15

20

25

30

35

40

45

8 16 32 64

Block Size (Bytes)

M
is
s
 R
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig14(b). Impact of Block Size

Figure 14(c) shows the impact of set associative on

miss rate. For most of the applications a cache with

direct mapping is enough to obtain less than 5% miss

rate. All of these crypto algorithms need a 2-way set

associative cache to obtain the best performance.

Impact of Set Associativity

0

1

2

3

4

5

6

7

8

1 2 4 8 16

Number of Sets

M
is
s
 R
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig14(c). Impact of Set Associativity

Figure 14(d) presents the impacts of cache

replacement strategies. It is not surprising that FIFO

has similar performance to LRU replacement

algorithm. This is only true when the size of the cache

is large enough to avoid the compulsory misses.

Random choosing policy gives the maximum miss

rate.

 11

Impact of Replacement policy

0

0.5

1

1.5

2

2.5

3

3.5

AES DES 3DES RC4 IDEA MD5 SHA1

M
is
s
 R
a
te
 %

LRU

FIFO

Random

Fig14(d). Impact of replacement strategy

Combining the above four observations into one, we

can safely conclude that a direct-mapped 128KB

instruction cache with line size as 32 bytes, 2-way set

associativity is enough for most of the cryptographic

applications to obtain the best performance. LRU or

FIFO replacement strategy contributes almost the best

performance, sophisticated replacement strategy is not

necessary.

8.2 L1 Data Cache Behaviors

The cryptographic applications have similar data cache

behaviors to instruction cache behaviors. Figure 15

shows the simulation results by changing cache size,

line size, set associative, and replacement strategy.

Figure 15(a) shows the impact of cache size on the

miss rate. A cache of 32KB can reduce miss rates of

block and hash and stream ciphers to less than

approximately 10%; which is the best achievable, in

average. The miss rate cannot be reduced any more

even with larger cache sizes for stream ciphers and

block ciphers. This is because there exist too many

compulsory misses. Stream ciphers take the input data

as continuously streamed data, which leads to high

compulsory miss rate. However with a cache size of

64KB or even more, we can get a lower miss rate for

hash algorithms.

Impact of Cache Size on Miss Rate

0

5

10

15

20

25

4 8 16 32 64 128 256

Cache Size (KB)

M
is
s
 R
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig15(a). Impact of Cache Size

Line sizes have different impacts on miss rates for the

three types of applications, as shown in Figure 15(b).

A 4-way 16KB data cache with a line size of 64 bytes

has less than 3% miss rate for hash and most of block

ciphers except DES. The larger the line size is, the

lower miss rates for all kind of algorithms. The data

cache behaviors of the selected cryptographic

programs are more similar to that of CommBench

rather than SPECint benchmark programs. The

average data miss rates are lowered to less than 3%

with 64KB data cache for selected program, while the

miss rates of SPECint and CommBench benchmark

programs (except for ZIP, FRAG, and DRR

applications) are approximately 4% and below 1%,

respectively.

Impact of Block Size on Miss Rate

0

5

10

15

20

25

8 16 32 64

Block Size (Bytes)

M
is
s
 R
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig15(b). Impact of Block Size

Hash programs and most of the block ciphers do not

have high demands for set associativity, as shown in

Figure 15(c). A direct-mapped cache of 32KB is

enough to achieve miss rate lower than 10% for all

kind of ciphers. Compulsory miss dominates cache

miss rate of SHA1 and MD5. AES and DES needs 2-

way set associative data cache to obtain miss rate at its

best level.

Impact of Set Associativity

0

1

2

3

4

5

6

7

1 2 4 8 16

Number of Sets

M
is
s
 R
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig15(c). Impact of Set Associativity

Cache replacement strategy does not have greater

impact on the cache miss rate. LRU replacement

strategy can be replaced with FIFO or with Random

type replacement for all kind of ciphers without

increasing miss rate by more than 1%.

 12

Impact of Replacement Polilcy

0

1

2

3

4

5

6

AES DES 3DES RC4 IDEA MD5 SHA1

M
is
s
 R
a
te
 %

LRU

FIFO

Random

Fig15(d). Impact of Replacement Strategy

8.3 L2 Unified Cache Behaviors
 I have simulated the L2 unified cache

behaviors for all the applications as well, the results of

which are shown in Figure 16. Due to most of the

memory references are absorbed by L1 caches, the

miss rate of L2 cache is high, as shown in Figure

16(a). Figure 16(a) indicates that only an L2 cache of

512KB is needed to achieve the lowest miss rate. L2

cache is also used to decrease the latency of memory

references.

Impact of Cache Size

0

10

20

30

40

50

60

70

80

4 8 16 32 64 128 256 512 1024 2048

Cache Size (KB)

M
is
s
 R
a
te
 %

AES

DES

3DES

RC4

IDEA

MD5

SHA1

Fig16 (a). Impact of Cache Size

Figure 16(b) shows the impact of different

replacement strategies on cache miss rate. All the three

replacement strategies, FIFO, LRU, Random, have

nearly the identical impacts on all the three different

kinds of crypto ciphering.

Impact of Replacement Policy

0

5

10

15

20

25

30

35

40

45

50

AES DES 3DES RC4 IDEA MD5 SHA1

M
is
s
 R
a
te
 %

LRU

FIFO

Random

Fig16(b). Impact of Replacement Strategy

9. Conclusions:

 The performance of cryptographic processing

has become a critical factor of good system design as

the Internet expands as the primary medium for secure

communication. In this paper i selected seven widely

used cryptographic programs from OpenSSL open

source and analyzed their architectural demands for

network processors. I focus on the generalized

architectural properties of the selected cryptography

applications that are applicable to all network

processor architectures.

Taking the advantage of the SimpleScalar tool

set to simulate the MIPS-like processor architecture, I

learnt the performance of these selected algorithm

implementations. Based on the computational

complexity I observed, I see that the security functions

would become the performance bottleneck of Network

processors with security functions. The processing

power of a general-purpose processor embedded in a

network processor is not sufficient to sustain the high

bandwidth links. Novel architectures optimized for

security functions are needed in order for the network

processors to have sufficient security processing

power.

I studied the architectural properties including

instruction set characteristics, instruction level

parallelisms, branch prediction, and cache behaviors

for these seven programs. I find that the instruction

mix of these programs has major differences from that

of SPECint95 benchmark programs and from that of

the Average kind of programs as mentioned in [4].

Cryptographic algorithm implementations have much

higher percentage of arithmetic instruction, much

lower percentage of branch instructions and quite bit

of memory reference instructions. Stream ciphers are

much more similar to hash ciphers than to block

ciphers in terms of computational complexity. We find

that the average size of basic blocks is 2~3 times larger

than common applications. Most of the branches

require advanced kind of predictions like bimodal or

combinational or 2level. A simple branch prediction

with all the branches being predicted taken or not

taken is not enough for comparable performance. Most

of the cryptographic applications have an ILP of 4.

The high data dependence is the main limitation to

exploit more ILPs. Memory system has significant

amount of important effect on the overall performance.

I find that most of the applications need L1 Instruction

cache of 128KB and L1 Data cache of 32 KB. Its only

needed a small direct-map instruction cache and data

cache to achieve comparable performance. Cache

 13

replacement strategy is not important to the overall

performance.

The results in this paper are basically

compared to those of the paper [4] to get a clear

picture of general average kind of algorithms vs.

OpenSSL crypto algorithms which is helpful to the

design of network processors considering OpenSSL

crypto engines. It is a good idea to use a standalone

cryptographic application specific chip multiprocessor

attached to the network processor to effectively meet

high throughput demands in secure communication.

Observation: Li’s Analysis

 (Widely

available

crypto

Algorithm)

My Analysis

(OpenSSL

Crypto

Algorithms)

Instruction

Mix:

23% Memory

Reference

60% Arithmetic

computations

40-45 %

Memory

Reference

68% Arithmetic

Reference

Cycles per Byte

of Computation

Block:80

Stream: 20

Hash: 18

Block: 55

Stream: 55

Hash: 30

ALU Vs IPC

IFQ Vs IPC

ILP Vs IPC

Best when 4

ALUs

Best when IFQ

is 4

Best when ILP

is 4

Best when 4

ALUs

Best When IFQ

is 4

Best when ILP

is 8

Branch

prediction

technique

Simple

technique

(taken or not

taken)

Complex

technique

(Bimodal or

Combinational)

L1 Instruction

cache

parameters

16KB cache

size, 8 bytes of

line size, 4 way

set, l

replacement

128KB Cache

size, 32 bytes

line size, 2 way

sets, l

replacement

L1 Data Cache

parameters

32KB cache,

8bytes of line

size, 2 way

sets, l

replacement

32KB cache

Size, 64 bytes

line size, 2 way

set, l

replacement

UL2 Unified

cache

parameters

64 KB cache

Size, l kind of

replacement

policy

512 KB cache

size, l kind of

replacement

policy

Acknowledgement

I would like to thank Li Zhao for her constant help

towards making me understand the OpenSSL crypto

programs and usage of simplescalar and also for

helping me to finish this small project within the small

amount of time period.

References:

1. SimpleScalr Tool Set

 http://www.simplescalar.com/

2. OpenSSL 0.9.7e

http://www.openssl.org/

3. Anatomy and Performance of SSL

processing by Li Zhao, Ravi Iyer, Srihari

Maikeneni, Laxmi Bhuyan.

4. Architectural Analysis of Cryptographic

applications for Network processors by

Haiyong Xie et. al.

5. A.O. freier, P. karlton, P.C. Kocher, “The

SSL protocol, V3.0”, IETF Draft,

http://wp.netscape.com/eng/ssl3/3-

spec.htm

6. T. Dierks, C. Allen, The TLS protocol

version 1.0,

http://www.ietf.org/rfc/rfc2246.txt

7. P. Ferguson and G. Huston. What is a

VPN?http://www.employees.org/ferguson/

vpn.pdf, 1998

8. R. Atkinson. Security architecture for the

internet protocol. IETF Draft Architecture

ipsec-arch-sec00, 1996

9. Standard performance Evaluation

Corporation SPEC CPU95 version 1.10,

August 21, 1995

10. T. Wolf, M. Franklin, CommBench: A

telecommunication benchmark for

Network Processors, IEEE International

Symposium on Performance Analysis of

systems and software, Austin TX, Apr.

2000

11. J. Daemen, V. Rijmen, AES Proposal:

Rijndael,

http://csrc.mist.gov/encryption/aes/round2

/AESAlgs/Rijndael, 1999

12. Advanced Encryption Standard (AES)

Development Effort, US Government,

http://csrc.nist.gov/encryption/aes/

13. D. Davis, W. Price, Security for Computer

Networks, Wiley,

 14

14. X. Lai, On the Design and Security of

Block Ciphers, Hartung-Gorre Veerlag,

1992

15. “Recommendation for Block Cipher

Modes of Operation. Methods and

Techniques”. National Institute of

Standards and Technology, Technology

Administration, U.S. Department of

Commerce.

http://csrc.nist.gov/publications/nistpubs/8

00-8a/sp800-38a.pdf

16. R. Rivest, The MD5 Message-Digest

Algorithm, RFC 1321, April 1992

17. A. Menezes, P. van Oorschot, S. Vanstone,

Algorithm 9.53 Secure Hash Algorithm -

revised (SHA-1), Handbook of Applied

Cryptography, CRC Press, 1997

