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Abstract 

 
The wide spread adoption of the internet as a trusted 

medium of communication and commerce has made 

cryptography an essential component of modern 

information systems. So the performance of 

cryptographic communication applications on network 

processor has become an important topic of network 

processor system design. In this paper I compare and 

analyze the architectural characteristics of some wide 

spread cryptographic algorithms and their 

implementations through simulation on Simple Scalar, 

a MIPS like architecture. I have compared the 

instruction mix of the OpenSSL crypto algorithms with 

that of the SPEC95, CommBench and Average kind of 

algorithms. Also I have given a clear comparison of 

the average computational complexity per byte 

between the OpenSSL crypto algorithms and the 

others. Then considering 7 of these crypto algorithms 

(1 stream cipher type,3 block cipher type and 2 hash 

type) i have analyzed the impact of various cache 

sizes, different kind of branch predictions, different 

number of ALUs, and different Instruction fetch queue 

sizes.  I find that memory system has a significant 

effect on overall performance. An ILP of 8,128 KB 

Instruction cache size and 32 KB Data cache size and 

direct mapping give better cryptographic operation for 

OpenSSL crypto algorithms. Cache replacement 

strategy doesn’t have an importance in overall 

performance. 

 

1.  Introduction 

 
In an increasingly connected world, cryptography has 

become an essential component of modern information 

systems. Cryptography provides the mechanisms 

necessary to provide accountability, accuracy and 

confidentiality in inherently public communication 

medium such as the internet. Today cryptography 

processing is primarily reserved for electronic 

commerce transactions and secure e-mail, however the 

adoption of Virtual private Networks (VPNs) [7], 

secure IP (IPSEC) [8], Transport Layer security (TLS) 

[6] and Security Socket Layer (SSL) [5] will subject 

more of all communication to cryptographic 

processing. As secure communication bandwidth 

demands continue to grow, so too will the importance 

of efficient cryptographic processing. In this paper I 

focus on SSL protocol based on the open source called 

OpenSSL [2]. 

 

SSL protocol has been widely used in highly secure 

applications like e-commerce and banking systems. Li 

Zhao et. al [3] analyzed the SSL performance in secure 

web transactions. By presenting a detailed description 

of the anatomy of SSL processing they contributed 

architectural characteristics of crypto operations. They 

analyzed the CPI, path length and frequently used 

instruction in these crypto operations. They also 

presented an ISA/hardware support to improve the 

SSL processing. However the detailed architectural 

analysis of the SSL crypto operations has not been 

done. 

 

On the other hand, the emerging network processors 

(NPs) which are application specific programmable 

processors will become fundamental building blocks 

of next generation networking equipments. Network 

processor can provide high and flexible packet 

processing and have been targeted for diverse 

application domains. Network processors are mainly 

designed and improved for high and flexible packet 

processing such as packet forwarding based on routing 

tables at wire speed. However they are targeted not 

only for packet processing applications. As demands 

for communication security grow cryptographic 

processing becomes another type of application 

domain. To make network processor flexible for 

diverse application domains, we need study the 

architectural requirements of each domain, especially 

cryptographic application domain.  The bandwidth of 

internet links and the packet processing power of 

network processors have been increasing very quickly 

in the past few years. To meet the increasing demands 

for secure communication, the network processors 

have to performance cryptographic functions at the full 

speed to achieve comparable performance of security 

processing. The impact of security related functions 

performed on the network processors is still not clearly 

known to us. 
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Compared to studies on architectures and 

applications of packet processing power provided by 
network processors, little research has been conducted 

on the architectural requirements for cryptographic 

applications for processor designs. Haiyong Xie et. al. 

[4] have analyzed the architectural characteristics of 

crypto operations of Average algorithm and have 

proposed an acceptable architecture for cryptographic 

application specific uses which is quite different from 

the architecture of packet processing application 

specific processor. However keeping the view of SSL 

protocol and openly available SSL crypto algorithms, i 

intended to study the same architecture characteristic 

analysis and to study if there is a need for a different 

architecture for SSL type of crypto algorithms.  

 

In this paper I considered 2 types of cryptographic 

applications; namely block ciphers and stream ciphers. 

The other forms of cryptography such as hash 

algorithm and public-key ciphers have not been 

studied yet. Through detailed timing simulation and 

profiling, I find that the cryptographic applications 

demonstrate different architectural properties than [4] 

.The architectural properties I studied include 

Instruction set characteristics, instruction level 

parallelism (ILP), and cache performance.  I find that 

the instruction mix of the SSL cryptography operation 

consists of 60% arithmetic instructions and around 

40% of memory reference instructions, and much 

lower percentage of branch predictions compared to 

SPECint95 [9], CommBench[10] and Average Crypto 

[4] .So the high precision branch prediction 

mechanism is not a need here. However as the average 

size of the blocks is larger than SPECint95, 

CommBench and Average Crypto, it is possible to take 

the advantage of instruction level parallelism much 

better. I see that an ILP of 8 holds good for most of the 

time as same to [4]. Compared to ILP, cache 

architecture have much significant effect on the overall 

performance as opposed to [4].I see that an instruction 

cache of 128 KB and a data cache of 32 KB are 

enough for most of the application not as the same as 

16 KB in [4].Cache replacement strategy doesn’t 

provide much improvement on the overall 

performance. 

 

The above result will guide towards designing a 

special network processor for SSL crypto processing 

which is quite different from other crypto operations. 

The rest of the paper is structured as follows. Section 2 

describes the selection of cryptographic algorithms. 

Section 3 describes the simulation environment and 

methodology. Section 4 represents the instruction set 

characteristics and instruction mix profile of these 

applications. Section 5 describes the computational 

complexity of cryptographic programs, measured by 

the number of cycles spent in processing 1 byte data. 

Section 6 represents the instruction level parallelism 

properties. Section 7 shows the branch prediction 

properties. Section 8 deals with the cache behavior. 

Section 9 summarizes the contributions of this work 

and concludes the paper. 

 

2. Selection of SSL Cryptographic Applications 

  
As my main aim is to run the OpenSSL crypto 

algorithms and analyze the architecture, I have chosen 

the algorithms according to the availability in the open 

source of OpenSSL version -0.9.7e. Also, the most 

important criteria of selection of cryptographic 

algorithms and their implementations for architectural 

analysis is the representativeness of a wider 

application class in the domain of interest. There are 

two such application domains: hash algorithms and 

private key ciphers, the latter of which includes block 

ciphers and stream ciphers. Cryptographic applications 

in these domains are all widely used in Internet 

applications. The third criteria is the popularity and 

availability of the algorithms. Widely used algorithms 

favor over less used ones. Most of these cryptographic 

algorithms are employed in popular protocol suites 

such as SSL and applications such as PGP. With these 

in mind, i choose 7 algorithms and their 

implementations for analysis. Four of them are block 

ciphers; One of them is data stream processing and 

other two are hash algorithms. 

 

2.1 Block Ciphers: 
 

The majority of the encryption algorithms in 

use today are block ciphers. They take blocks of data 

(typically 64 bits or 128 bits) as input and only encrypt 

the blocks separately. The summaries of selected block 

ciphers are shown in Table 1. I have chosen 4 block 

cipher types such as; 1.AES, 2.DES, 3.3DES, 4.IDEA 
 

2.1.1 AES  

  
AES (Advanced Encryption Standard), which 

is also named as Rijndael [11], is the standard of AES 

[12]. It has a variable key size of 128, 192 or 256 bits. 

The symmetric and parallel structure of this algorithm 

gives implementers a lot of flexibility, and has not 

allowed effective cryptanalytic attacks. AES can be 

well adapted to a wide range of modern processors 

such as Pentium, RISC and parallel processors. AES 

has been put into wide use up to now. One of the 

examples is DMSEnvoy developed by Distributed 

Management System Ltd. 
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 AES is a substitution-linear transformation 

network with 10, 12 or 14 rounds, depending on the 

key size. A data block to be encrypted by AES is split 

into an array of bytes, and each encryption operation is 

byte-oriented. AES's round function consists of four 

layers. In the first layer, an 8x8 S-box is applied to 

each byte. The second and third layers are linear 

mixing layers, in which the rows of the array are 

shifted, and the columns are mixed. In the fourth layer, 

sub key bytes are XORed into each byte of the array. 

In the last round, the column mixing is omitted. So the 

algorithm consists of 4 main steps: a substitution step, 

a shift row step, a mix column step and a sub key 

addition step. The substitution step consists of Sboxes. 

The shift row step consists of a cyclic-shifting of the 

bytes within the rows.The key addition is straight 

forward XOR operations between the data and the key. 

 
 

Fig1. (Architecture of Advanced Encryption 

Standard Data path) 
Here I have chosen AES algorithm of key length of 

128 bits and of cipher block chaining (cbc) encryption. 

 

2.1.2 DES 

 
 The Data Encryption Standard (DES) 

cryptographic algorithm is based on a 128-bit block 

algorithm developed in the 1960s by IBM. It was 

designed to use a 64-bit key to encrypt and decrypt 64-

bit blocks of data using a cycle of permutations, 

swaps, and substitutions. Encryption and decryption 

use the same key. A block to be encrypted is subjected 

to an initial permutation, then to a complex key-

dependent computation, and then to a final 

permutation. The initial and final permutations take 

the 64-bit block and change the position of each bit in 

a pre-determined manner. The final permutation is the 

reverse of the initial permutation. A DES key consists 

of 64 binary digits of which 56 bits are randomly 

generated and used directly by the algorithm. The 

other 8 bits, which are not used by the algorithm, are 

used for error detection. The 8 error detecting bits are 

set to make the parity of each 8-bit byte of the key 

odd, i.e., there is an odd number of "1"s in each 8-bit 

byte. DES can operate in different modes like ECB 

(electronic Code Book), CBC (Cipher Block 

Chaining), CFB (Cipher Feedback), and OFB (Output 

Feedback). Here I have chosen the CBC kind of 

encoding using the 128 bits of key length. 

 
Fig2. (DES Block Diagram) 

 

2.1.3 3DES 

 
 3DES [13] achieves a high level of security by 

encrypting the data three times using DES with three 

different, unrelated keys. Therefore, 3DES use a larger 

size of key to encrypt than that of DES. The larger the 

key, the harder the cipher can be broken. 

 

Fig3. (Basic 3DES algorithm Block Diagram) 
 

The block of plaintext is split into two halves (L0,R0). 

each of which is 32 bits long. Also DES uses the 

original 56 bit key to generate 16 keys of 48 bits each 

(ki). These sub keys are used in the 16 rounds. In each 

round, the function F is applied to one half using a sub 

key ki and the result is XORed with the other half. The 

two halves are then swapped and the process is 

repeated. All the rounds follow the same pattern 

except the last one, where there is no swap. The final 
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result is the cipher text (Lr,Rr). Hence the plaintext 

(L0,R0) is transformed to (Lr,Rr). In 3DES, we apply 3 

stages of DES with a separate key for each stage. So 

the key length in 3DES is 168 bits. I have chosen the 

3DES algorithm with CBC kind of chaining and with 

168 bits. Because the CBC is the most common mode 

of using DES/3DES. The CBC mode is represented 

below. 

 

Fig4. (CBC Mode of Operation of DES/3DES) 

2.1.4 IDEA 

IDEA [14] is generally regarded as one of the 

best and the most secure block ciphers available to the 

public today. It uses 128-bit keys and operates on 64-

bit data blocks. Another reason for selecting IDEA is 

that it is, on average, much faster than many other 

ciphers. 

IDEA uses 52 sub keys, each 16 bits long. Two are 

used during each round proper, and four are used 

before every round and after the last round. It has eight 

rounds. The plaintext block in IDEA is divided into 

four quarters, each 16 bits long. Three operations are 

used in IDEA to combine two 16 bit values to produce 

a 16 bit result, addition, XOR, and multiplication. 

Addition is normal addition with carries, modulo 

65,536. Multiplication, as used in IDEA, requires 

some explanation. Multiplication by zero always 

produces zero, and is not invertible. Multiplication 

modulo n is also not invertible whenever it is by a 

number which is not relatively prime to n. The way 

multiplication is used in IDEA, it is necessary that it 

be always invertible. This is true of multiplication 

IDEA style. Let the four quarters of the plaintext be 

called A, B, C, and D, and the 52 sub keys called K(1) 

through K(52). Before round 1, or as the first part of it, 

the following is done: Multiply A by K(1). Add K(2) 

to B. Add K(3) to C. Multiply D by K(4).Round 1 

proper consists of the following: Calculate A xor C 

(call it E) and B xor D (call it F). Multiply E by K(5). 

Add the new value of E to F. Multiply the new value 

of F by K(6). Add the result, which is also the new 

value of F, to E. Change both A and C by XORing the 

current value of F with each of them; change both B 

and D by XORing the current value of E with each of 

them. Swap B and C. Repeat all of this eight times, or 

seven more times, using K(7) through K(12) the 

second time, up to K(43) through K(48) the eighth 

time. Note that the swap of B and C is not performed 
after round 8.Then multiply A by K(49). Add K(50) to 

B. Add K(51) to C. Multiply D by K(52). The 

intricacies of IDEA encryption may be made 

somewhat clearer by examining the following 

diagrams: 

   

Fig 5a. (Details)  Fig 5b. (Overview) 

I have chosen the IDEA algorithm with 128 bits 

of key length and of CBC kind of operation. 

Table 1: Selection of Block Ciphers 

Type Designer Key 

Length(Bits) 

Block 

Size 

(Bits) 

AES Rijmen 128,192,256 16 

DES Coppersmith 128 8 

3DES IBM 168 8 

IDEA Massey 128 8 
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2.2 Stream Ciphers 

 Compared with block ciphers, stream ciphers 

take data of variable length as operation objects. They 

use random numbers as the keys, which are combined 

with the plain text to generate the cipher text. The 

better the keys are randomly generated, the more 

secure the stream cipher is. The summaries of selected 
stream ciphers are presented in Table 2. I have chosen 

only 1 stream cipher i.e. RC4. 

 

2.2.1 RC4 
 

RC4 is a variable key-size (up to 2048 bits) 

stream cipher developed by Ron Rivest for RSA Data 

Security, Inc. The algorithm is very fast. Its security is 

unknown, but breaking it does not seem trivial either. 

Because of its speed, it may have uses in certain 

applications such as Lotus Notes and Oracle Secure 

SQL. 

 
Fig 6. (Block Diagram of RC4 Stream Cipher) 

 

RC4 uses a variable length key from 1 to 256 bytes to 

initialize a 256-byte array. The array is used for 

subsequent generation of pseudo-random bytes and 

then generates a pseudorandom stream, which is 

XORed with the plaintext/ciphertext to give the 

ciphertext/plaintext It works in Output Feedback 

(OFB) mode [15] of operation. There are two 256-byte 

arrays, S-Box and K-Box. The S-array is filled 

linearly, such as S0=0, S1=1, S2=2, ..., S255=255. The 

K-array consists of the key, repeating as necessary 

times, in order to fill the array. The RC4 stream cipher 

works in two phases. The key setup phase and the 

pseudorandom key stream generator phase. Both 

phases must be performed for every new key. Here I 

have chosen the OpenSSL RC4 algorithm with a key 

length of 128 bits and in OFB mode. 

 

Table 2: Selection of Stream Ciphers 

 

Type Designer Key Application 

Length(Bits) 

RC4 Rivest 8 to 2048 

multiple of 8 

bits; default 

128 bits 

SSL 

 

2.3 Hash Algorithms 

  
Hash algorithms are fundamentals to many 

cryptographic applications. Although widely 

associated with digital signature technology, the hash 

algorithm has a range of other uses. SHA-1 and MD5 

are amongst the most widely known, trusted and used 
As OpenSSL has these two algorithms I have chosen 

both of them. 

 

2.3.1 MD5 

  
MD5 [16] is an accepted standard for message 

digest. It generates an output of 128-bit message digest 

of the input. It is conjectured that it is computationally 

infeasible to produce two messages having the same 

message digest. The MD5 algorithm is commonly 

used for digital signature applications, where a large 

file must be "Compressed" in a secure manner before 

being encrypted with a private key under a public-key 

cryptosystem. MD5 is much more reliable than 

checksum and many other commonly used methods. 

 
Fig7. (Block Diagram for the MD5 Megafunction) 

 
This megafunction is a fully compliant hardware 

implementation of the MD5 Message-Digest 

Algorithm, suitable for a variety of applications. It 

computes a 120-bit message digest for messages of up 

to (264 – 1) bits. MD5 algorithm operates on message 

blocks of 512 bits for which a 128-bit (4 by 32-bit 

word) digest is produced. Corresponding 32-bit words 

of the digest from consecutive message blocks are 
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added to each other to form the message of the whole 

message. Here I have chosen digest size of 128 bits 

and block size of 512 bits. 

 

2.3.2 SHA1 

 
 SHA1 [17] is specified within the Secure Hash 

Standard (SHS) for using with Digital Signature 

Standard (DSS). It has a greater hash size than MD5, 

so it is more secure. It generates 160-bit digest, which 

is large enough to protect against “birthday” attacks. 

Fig 8.  (Elementary SHA operation: single Step) 

Fig9. (SHA1 processing of a Single 512-bit 

Block)  

I have chosen the SHA1 algorithm from OpenSSL 

source with 512 bits of block size, and 160 bits of 

digest size.  

 

Table 3: Selection of Hash Algorithms 

Type Designer Block 

Size(Bits) 

Digest 

Size(Bits) 

MD5 Rivest 512 128 

SHA1 USA 

Security 

Agency 

512 160 

3. Simulation Environment 

In this paper I focus the architectural properties of 

above described cryptography applications. I collected 

the above said algorithms from OpenSSL-0.9.7e [2]. 

After creating the library i made the separate codes for 

self execution for each of the 7 algorithms. Then i 

ported and ran them in the execution driven simulator, 

SimpleScalar version3.0 [1]. The SimpleScalar tool set 

is a suite of publicly available simulation tools that 

provides fast, flexible, and accurate simulation of 

modern processors that implement the SimpleScalar 

architecture, which is a close derivative of the MIPS 

architecture. The C compiler used is gcc 2.7.2.3 

(optimization level O2) coming with SimpleScalar. 

The O2 optimization level is selected for the reason 

that the compiler only performs optimizations that are 

independent of the target processors and does not 

exploit particular architectural features. 
 

The algorithms are executed with a relatively large 

text file of 260 KB as well as a small file of 1byte. A 

key of 128 bits is used with all the block and stream 

ciphers except 3DES, which is executed with a key of 

168 bits and 160 bits respectively. The default 

configuration of the simulated processor architecture 

has a L1 instruction cache and a L1 data cache, a 

unified L2 cache, an ILP of 4, and bimodal as the 

branch prediction algorithm. The L1 caches have 4-

way set associative, 32-byte line size, LRU 

replacement strategy, and 16KB in size. The unified 

L2 cache has 4- way set associative, LRU replacement 

strategy, 64-byte line size, and 512KB in size. This L1 

and L2 cache configuration are the same as that of 

PentiumII microprocessors. 

 

Table 4: Simulator Parameters 

 
Type Default values Variable parameters 

Processor 

Speed 

2.4 GHz NIL 

Fetch 

Width 

8 Instructions 1,2,4,8,16,32 

Pipeline 11 NIL 
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Depth 

Functional 

Units 

6IntALU,6IntMult, 

2FpALU,2FpMult 

IntALU:1,2,4,8 

FpALU:1,2,4,8 

Issue 

Width 

8Int, 4Fp NIL 

Issue 

Queue 

Size 

64 Int, 32Fp NIL 

Load/Store 

Queue 

Size 

64 LQ, 64 SQ NIl 

Branch 

Predictor 

Bimodal Not Taken, taken, 2level, 

bimodal, combinational 

Branch 

target 

buffer 

1K Entry, 4way NIl 

Branch 

mispredict 

penalty 

9 NIL 

L1 

Instruction 

Cache 

64KB, 2way, 

32byte Block line, 

1cycle latency, l 

replacement policy 

� change the cache 

size:4,8,16,32,64,128,256 

KB 

� Change the Block 

Size: 8,16,32,64 bytes 

� Set Associativity: 

1,2,4,8,16 

� Replacement Policy: l, 

f, r 

L1 Data 

Cache 

64KB, 2 way, 

64byte Block line, 

l replacement 

policy 

� Cache size: 

4,8,16,32,64,128,256 KB 

� Block Size: 

8,16,32,64 bytes 

� Set Associativity: 

1,2,4,8,16 

�Replacement Policy:l, 

f, r 

L2 Cache 512 KB, 2Way, 

64B Line, 

NIl 

L3 Cache 4Mb, 4 Way, 64B 

line 

NIl 

UL2 

unified 

Cache 

1024 KB, 4 Way, l 

replacement,64 

Byte line size 

ILP of 4. 

� Cache Size: 4,8,16,32, 

64, 128, 256, 512, 1024, 

2048 

�Replacement Policy: l, 

f, r 

 

4. Instruction set characteristics 

 
 The instruction set characteristics give an 

indication on the types of instructions executed and 

their frequencies in the programs. Figure 10 presents 

the instruction mix profile and frequencies for the 

implementations of all the selected algorithms, 

SSLcrypto algorithms, averages algorithms [4], 

SPECint95 programs and CommBench programs. The 

average instruction mix of these cryptographic 

programs shows great differences from that of both 

SPECint and CommBench programs.  
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 Fig10(a).Comparisons of instruction mix 
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Fig10(b).Block and Stream Ciphers Instruction 

mix 

 
Figure 10(a) depicts the averages of block ciphers, 

stream ciphers, hash algorithms of OpenSSL named as 

SSLCrypto. The “Average” shows that of [4].  The 

following points out the differences: 1).The 

SSLCrypto has higher percentage of arithmetic 

instructions than CommBench and SPECInt and lower 

than the Average. It is clear from the above graph that 

the SSLCrypto applications are more computational 

intensive than SPECInt and CommBench but less than 

Average. This computation may consume most of the 

network processor’s computation power. (2).The 

SSLCrypto has significant amount of memory 

reference compared to Average algorithms. As 

opposed to [4], here It means that SSLCrypto 

applications are more or less memory reference 

bounded and that we may need a less complicated 

memory system with significant amount of hit rate. 

(3).The SSLCrypto programs have much lower 

percentage of branch instructions, which is 3.42% in 

average compared to 20% of SPECint95. The sharp 

difference in the conditional branch instruction 

frequencies makes it unnecessary to employ 

complicated branch prediction mechanisms. In the 
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following sections we also study the branch prediction 

requirements for these cryptographic applications. 

 
Figure 10(b) shows the instruction mix profile for 

block ciphers, stream ciphers, and hash algorithms. 

The following observations are important: (1). Among 

all the selected block ciphers, only DES and 3DES 

have similar and high percentage of memory reference 

instructions (45% and 47% respectively) compared to 

SPECint95 programs (35% in average). Thus these 

two applications have higher requirements on the L1 

data cache architectures, as is proved by the studies of 

cache behaviors. (2). Among all the selected block 

ciphers, IDEA has similar percentage of conditional 

branch instructions (11%) compared to SPECint95 
programs (17% in average). This potentially means 

that IDEA implementation may need better branch 

prediction mechanisms with higher hit rate to achieve 

good performance. However, in later section dealing 

with branch prediction properties, it is learned that it is 

still not necessary to employ such mechanisms for 

IDEA applications. (3).The selected stream ciphers 

and hash algorithms have quite different instruction 

mix properties from SPECint95. They all have 

significant percentage of both memory reference (up to 

25% each) and higher percentage of arithmetic 

instructions. (4).Stream ciphers are more similar to 

hash programs in terms of instruction mix. Block 

ciphers are quite different from both stream ciphers 

and hash programs.  

 

5. Computational Complexity 

 
This section shows the computational 

complexity measured in terms of the number of cycles 

spent per byte of the input data for each of the selected 

programs. Figure 11 depicts the computational 

complexity for each of the block ciphers, stream 

ciphers and hash algorithms. We can see that 3DES 

spends much more cycles than all other ciphers in 

processing one byte data. This is because 3DES 

applies the same data manipulation process three times 

with three different keys. The computational 

complexity is thus tripled. AES has a relatively high 

computational complexity compared to the other 3 

ciphers. Compared to block ciphers, stream ciphers 

and hash programs need much less cycles to process 

one byte data as shown in the figure.  Stream ciphers 

exhibit more like hash algorithms rather than block 

ciphers in perspectives of cycles spent per byte 

operation. 
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Fig11. Computational Complexity of the 

selected Algorithms 

 

6. Instruction Level parallelisms 

 
 Instruction level parallelism is a crucial issue 

for consideration. We can exploit instruction level 

parallelisms to achieve high performance for these 

computationally intensive cryptographic applications. 

To study the ILP properties of these applications, we 

verify the number of ALUs, the size of instruction 

fetch queue, and both, to see the separate and 

combined contributions of each component. We did 

not consider the decoder and issue units and we simply 

set the number of these resources to their maximum 

value so that they do not have any impact on the 

performance. Figure 12(a) shows the impact of 

changing the number of integer ALUs keeping the 

default value of FP ALUs. The size of instruction fetch 

queue is set to its maximum number available to 

eliminate the affect. It is observed that the number of 

instructions that can be executed in one cycle increases 

by 26%, 37%, and 40% for Block, stream and hash 

kind of algorithms respectively when the number of 

ALUs increases from 1 to 2, and by 6%, 10%, and 5% 

when the number of ALUs increases from 2 to 4. 

However, with more than 4 ALUs, the number of 

instructions executed in one cycle increases only less 

than 1%. 
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Fig12(a). Impact of ALU on Average ILP  
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Figure 12(b) shows the separate contribution of 

instruction fetch queue to the overall performance 

measured by instructions executed per cycle. The 

number of ALUs is set to its maximum value in order 

to eliminate the affect of ALUs. From the figure it is 

observed that an instruction fetch queue of size 4 is 

enough for all cryptographic applications. The number 

of instructions executed per cycle increase by 26%, 

37%, and 40% for block, stream and hash kind of 

algorithms respectively after the size of the instruction 

fetch queue changes from 1 to 2. And the same 

increases as 6%, 10% and 5% respectively if the 

instruction fetch queue changes from 2 to4. After that, 

the performance improvement is less than 2% when 

we double the size of the queue. 
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Fig12(b). Impact of IFQ on average ILP 

 
Figure 12(c) depicts the overall impact of functional 

unit resources available, that is, the number of ALUs 

and the size of instruction fetch queue. We use ILP to 

represent the changes of functional unit resources, for 

example, an ILP of 8 means that the processor has an 

instruction fetch queue of size 8 and 8 integer ALUs 

and 8 FP ALUs available. It has been seen that the 

performance measured by the number of instructions 

executed per cycles increases linearly as ILP increases 

from 1 to 2 to 4. The performance improvement is less 

than 1% when ILP increases from 4 to 8. From these 

figures we conclude that an ILP of 4 is enough and the 

most cost effective for achieving the best performance 

for the selected cryptographic applications. 
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Fig12(C). Overall Impact of ILP 

 

7. Branch Prediction 

 
 Branch prediction does not seem to be as 

important as instruction level parallelisms. One of the 

reasons has been stated in Section 4: the percentage of 

conditional branch instructions is low in cryptographic 

applications. Even if the miss prediction rate is high, 

the effect of this miss prediction is still not so serious 

to the overall performance. Another consideration is 

what kind of branch prediction mechanism is best 

suitable to cryptographic programs. Figure 13 presents 

the prediction hit rate of each prediction mechanism 

available in the simulator for all the crypto 

applications I have considered. It can be observed 

from Figure 13 that most of the conditional branches 

are either bimodal or combinational or 2level.Each 

kind of these branch prediction gives us a Hit rate 

more than 60%. Therefore, sophisticated branch 

prediction mechanisms like Bimodal or Combinational 

or 2level are some short of requirement for these 

cryptographic programs. A simple static branch 

prediction mechanism with the branches being 

predicted always taken or not taken may not be  

sufficient. 
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Fig13. Average Branch Prediction Hit Rate 
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8. Cache Behaviors 
 Cache behaviors are other important 

considerations for the design of network processors. 

From Section 4, it is found that the memory reference 

instructions account for around 45% of all the 

instructions executed for cryptographic programs. This 

means that proper cache architecture is required for 

most of the security related applications. We measure 

the cache performance for each of selected 

applications. Separate instruction and data caches 

ranging from 4KB to 256KB are simulated. 

 

8.1 L1 Instruction Cache Behaviors 
 Figure 14 shows the results for instruction 

cache behaviors by changing such cache parameters as 

cache size, line size, set associative, and replacement 

strategy. Figure 14(a) presents the simulation results of 

cache performance when the cache size is changed. It 

can be seen that these crypto algorithms require a big 

L1 cache size for getting a very low miss rate. L1 

instruction Cache size of 128 KB is enough to achieve 

miss rates at the lowest value possible for all the three 

kind of algorithms. This figure also shows that the 

miss rate of all the three kind of algorithms cannot be 

reduced even with much larger cache sizes due to 

compulsory misses. Compared to benchmark programs 

of CommBench, cryptographic programs have larger 

kernels. For CommBench programs, the instruction 

cache miss rates are lowered to under 0.5% when 

the instruction cache is increased to 8KB; 

however, the miss rates are as higher as 2% with 

the same cache size for the selected programs. 

Even when the cache size is 16KB, the lowest 

miss rate of the programs is still approximately 

1%, which is 4 times higher than that of 

CommBench programs. The instruction cache 

behaviors of cryptographic programs are much 

more different with that of SPECint programs, 

which have an average miss rate of 2.2% and 1% 

for 8KB and 16KB instruction caches 

respectively. 
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Fig14(a). Impact of Cache Size 

 
In figure 14(b), when the line size of instruction cache 

is increased, the miss rate is lowered for all the 

applications. The line size increase has greater impact 

on all kind of crypto algorithms. It is seen that a line 

size of 32 bytes is enough for block, stream and hash 

kind of ciphers to achieve miss rates less than 10% at a 

lower constant level. However it is observed that after 

32 bytes if we increase more there is very little effect 

on the miss rate and it doesn’t help much. 
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Fig14(b). Impact of Block Size 

 

Figure 14(c) shows the impact of set associative on 

miss rate. For most of the applications a cache with 

direct mapping is enough to obtain less than 5% miss 

rate. All of these crypto algorithms need a 2-way set 

associative cache to obtain the best performance. 
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Fig14(c). Impact of Set Associativity 

 
Figure 14(d) presents the impacts of cache 

replacement strategies. It is not surprising that FIFO 

has similar performance to LRU replacement 

algorithm. This is only true when the size of the cache 

is large enough to avoid the compulsory misses. 

Random choosing policy gives the maximum miss 

rate. 
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Impact of Replacement policy
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Fig14(d). Impact of replacement strategy 

 
Combining the above four observations into one, we 

can safely conclude that a direct-mapped 128KB 

instruction cache with line size as 32 bytes, 2-way set 

associativity is enough for most of the cryptographic 

applications to obtain the best performance. LRU or 

FIFO replacement strategy contributes almost the best 

performance, sophisticated replacement strategy is not 

necessary. 

 

8.2 L1 Data Cache Behaviors 

 
The cryptographic applications have similar data cache 

behaviors to instruction cache behaviors. Figure 15 

shows the simulation results by changing cache size, 

line size, set associative, and replacement strategy.  
 

Figure 15(a) shows the impact of cache size on the 

miss rate. A cache of 32KB can reduce miss rates of 

block and hash and stream ciphers to less than 

approximately 10%; which is the best achievable, in 

average. The miss rate cannot be reduced any more 

even with larger cache sizes for stream ciphers and 

block ciphers. This is because there exist too many 

compulsory misses. Stream ciphers take the input data 

as continuously streamed data, which leads to high 

compulsory miss rate. However with a cache size of 

64KB or even more, we can get a lower miss rate for 

hash algorithms. 
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Fig15(a). Impact of Cache Size 

 

Line sizes have different impacts on miss rates for the 

three types of applications, as shown in Figure 15(b). 

A 4-way 16KB data cache with a line size of 64 bytes 

has less than 3% miss rate for hash and most of block 

ciphers except DES. The larger the line size is, the 

lower miss rates for all kind of algorithms. The data 

cache behaviors of the selected cryptographic 

programs are more similar to that of CommBench 

rather than SPECint benchmark programs. The 

average data miss rates are lowered to less than 3% 

with 64KB data cache for selected program, while the 

miss rates of SPECint and CommBench benchmark 

programs (except for ZIP, FRAG, and DRR 

applications) are approximately 4% and below 1%, 

respectively. 
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Fig15(b). Impact of Block Size 

 
Hash programs and most of the block ciphers do not 

have high demands for set associativity, as shown in 

Figure 15(c). A direct-mapped cache of 32KB is 

enough to achieve miss rate lower than 10% for all 

kind of ciphers. Compulsory miss dominates cache 

miss rate of SHA1 and MD5. AES and DES needs 2-

way set associative data cache to obtain miss rate at its 

best level. 
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Fig15(c). Impact of Set Associativity 

 
Cache replacement strategy does not have greater 

impact on the cache miss rate. LRU replacement 

strategy can be replaced with FIFO or with Random 

type replacement for all kind of ciphers without 

increasing miss rate by more than 1%. 
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Fig15(d). Impact of Replacement Strategy 

 

8.3 L2 Unified Cache Behaviors 
 I have simulated the L2 unified cache 

behaviors for all the applications as well, the results of 

which are shown in Figure 16. Due to most of the 

memory references are absorbed by L1 caches, the 

miss rate of L2 cache is high, as shown in Figure 

16(a). Figure 16(a) indicates that only an L2 cache of 

512KB is needed to achieve the lowest miss rate. L2 

cache is also used to decrease the latency of memory 

references.  
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Fig16 (a). Impact of Cache Size 

 
Figure 16(b) shows the impact of different 

replacement strategies on cache miss rate. All the three 

replacement strategies, FIFO, LRU, Random, have 

nearly the identical impacts on all the three different 

kinds of crypto ciphering. 

 

Impact of Replacement Policy

0

5

10

15

20

25

30

35

40

45

50

AES DES 3DES RC4 IDEA MD5 SHA1

M
is
s
 R
a
te
 %

LRU

FIFO

Random

 
Fig16(b). Impact of Replacement Strategy 

 

9. Conclusions: 

   
 The performance of cryptographic processing 

has become a critical factor of good system design as 

the Internet expands as the primary medium for secure 

communication. In this paper i selected seven widely 

used cryptographic programs from OpenSSL open 

source and analyzed their architectural demands for 

network processors. I focus on the generalized 

architectural properties of the selected cryptography 

applications that are applicable to all network 

processor architectures.  

 

Taking the advantage of the SimpleScalar tool 

set to simulate the MIPS-like processor architecture, I 

learnt the performance of these selected algorithm 

implementations. Based on the computational 

complexity I observed, I see that the security functions 

would become the performance bottleneck of Network 

processors with security functions. The processing 

power of a general-purpose processor embedded in a 

network processor is not sufficient to sustain the high 

bandwidth links. Novel architectures optimized for 

security functions are needed in order for the network 

processors to have sufficient security processing 

power.  

I studied the architectural properties including 

instruction set characteristics, instruction level 

parallelisms, branch prediction, and cache behaviors 

for these seven programs. I find that the instruction 

mix of these programs has major differences from that 

of SPECint95 benchmark programs and from that of 

the Average kind of programs as mentioned in [4]. 

Cryptographic algorithm implementations have much 

higher percentage of arithmetic instruction, much 

lower percentage of branch instructions and quite bit 

of memory reference instructions. Stream ciphers are 

much more similar to hash ciphers than to block 

ciphers in terms of computational complexity. We find 

that the average size of basic blocks is 2~3 times larger 

than common applications. Most of the branches 

require advanced kind of predictions like bimodal or 

combinational or 2level. A simple branch prediction 

with all the branches being predicted taken or not 

taken is not enough for comparable performance. Most 

of the cryptographic applications have an ILP of 4. 

The high data dependence is the main limitation to 

exploit more ILPs. Memory system has significant 

amount of important effect on the overall performance. 

I find that most of the applications need L1 Instruction 

cache of 128KB and L1 Data cache of 32 KB. Its only 

needed a small direct-map instruction cache and data 

cache to achieve comparable performance. Cache 
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replacement strategy is not important to the overall 

performance.  

 

The results in this paper are basically 

compared to those of the paper [4] to get a clear 

picture of general average kind of algorithms vs. 

OpenSSL crypto algorithms which is helpful to the 

design of network processors considering OpenSSL 

crypto engines. It is a good idea to use a standalone 

cryptographic application specific chip multiprocessor 

attached to the network processor to effectively meet 

high throughput demands in secure communication. 

 

Observation: Li’s Analysis 

 (Widely 

available 

crypto 

Algorithm) 

My Analysis  

(OpenSSL 

Crypto 

Algorithms) 

Instruction 

Mix: 

23% Memory 

Reference 

60% Arithmetic 

computations 

40-45 % 

Memory 

Reference 

68% Arithmetic 

Reference 

Cycles per Byte 

of Computation 

Block:80      

Stream: 20 

Hash: 18 

Block: 55    

Stream: 55 

Hash: 30 

ALU Vs IPC 

IFQ Vs IPC 

ILP Vs IPC 

Best when 4 

ALUs 

Best when IFQ 

is 4 

Best when ILP 

is 4 

Best when 4 

ALUs 

Best When IFQ 

is 4 

Best when ILP 

is 8 

Branch 

prediction 

technique 

Simple 

technique 

(taken or not 

taken) 

Complex 

technique 

(Bimodal or 

Combinational) 

L1 Instruction 

cache 

parameters 

16KB cache 

size, 8 bytes of 

line size, 4 way 

set, l 

replacement 

128KB Cache 

size, 32 bytes 

line size, 2 way 

sets, l 

replacement 

L1 Data Cache 

parameters 

32KB cache, 

8bytes of line 

size, 2 way 

sets, l 

replacement 

32KB cache 

Size, 64 bytes 

line size, 2 way 

set, l 

replacement 

UL2 Unified 

cache 

parameters 

64 KB cache 

Size, l kind of 

replacement 

policy 

512 KB cache 

size, l kind of 

replacement 

policy 
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