
Using Software Evolution History to Facilitate
Development and Maintenance

Pamela Bhattacharya
Department of Computer Science and Engineering

University of California, Riverside, CA, USA
pamelab@cs.ucr.edu

ABSTRACT
Much research in software engineering have been focused on im-
proving software quality and automating the maintenance process
to reduce software costs and mitigating complications associated
with the evolution process. Despite all these efforts, there are still
high cost and effort associated with software bugs and software
maintenance, software still continues to be unreliable, and soft-
ware bugs can wreak havoc on software producers and consumers
alike. My dissertation aims to advance the state-of-art in software
evolution research by designing tools that can measure and predict
software quality and to create integrated frameworks that helps in
improving software maintenance and research that involves mining
software repositories.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—productivity

General Terms
Software, Evolution

Keywords
Software quality; developer productivity; software evolution; em-
pirical studies

1. INTRODUCTION
Software development and software maintenance are time, la-

bor and resource intensive processes. The costs associated with
software bugs are huge: a survey in 2002 by the National Insti-
tute of Standards and Technology estimates the annual cost of soft-
ware bugs to about $59.5 billion [8]. percent to 90 percent of to-
tal costs. Even for projects where costs are not a primary issue,
e.g., in open source settings, maintenance is still a lengthy, ardu-
ous process [3]. Existing research has focused on several aspects
to benefit the maintenance process. These include designing bet-
ter programming languages and adaptable Integrated Development
Environments (IDE) to improve programmer productivity, building

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

automatic debugging tools or by enabling stronger security poli-
cies etc. However, it has not been clear how much of these re-
search achievements have actually helped in reducing maintenance
costs. In fact, despite all these advances in research associated with
software development and maintenance, they are still ad-hoc pro-
cess with unsatisfactory results: costs associated with evolution are
high, yet new releases contain bugs and fail to operate as desired
and we still need to restart most programs to enable updates. In
this context, my dissertation has three main research objectives:
(1) studying the effects of programming language on quality and
developer productivity, (2) designing graph based models to pre-
dict maintenance effort and other software metrics, and (3) devel-
oping an automated framework to integrate various artifacts in OSS
to facilitate software repository mining.

2. CURRENT PROGRESS
In this section we discuss the two different problems we have

worked on, how our work helps in identifying factors that affect
maintenance costs and tools we have built to reduce this cost and
effort significantly.

2.1 Impact of Programming Language on De-
velopment and Maintenance

Quantitatively assessing the impact of programming language
on development and maintenance has been a long-standing chal-
lenge [6]. Recently there has been a shift in the language choice
for new applications: with the advent of Web 2.0, language popu-
larity statistics show that dynamic, high-level languages are gaining
more and more attraction [5]. These languages raise the level of
abstraction, promising accelerated development of higher-quality
software. However, the lack of tools for static checking, absence
of mature analysis and verification tools makes software written
in these languages potentially more prone to error and harder to
maintain. Prior efforts on analyzing the impact of choice of pro-
gramming language suffer from one or more deficiencies with re-
spect to the applications they consider and the manner they conduct
their studies. For example, they consider applications built by dif-
ferent teams in different languages, hence they fail to control for
developer competence, or they consider small-sized, infrequently-
used, short-lived projects. Using such methodologies often results
in analyses, which cannot be generalized to large real-world appli-
cations. In our study we address all these shortcomings by present-
ing a novel methodology for assessing the impact of programming
language on development and maintenance [2].

2.2 Automated Framework to Improve Bug
Triaging

Popular software projects receive hundreds of bug reports every
day [3]. Ideally, each bug gets assigned to a developer who can fix it

in the least amount of time. This process of assigning bugs, known
as bug triaging, is complicated by several factors: if done manually,
triaging is labor-intensive, time-consuming and fault-prone. More-
over, for open source projects, it is difficult to keep track of active
developers and their expertise. Prior work [1] has used machine
learning techniques to automate bug triaging but has employed a
narrow band of tools which can be ineffective in large, long-lived
software projects. To redress this situation, we employ a compre-
hensive set of machine learning tools and analyses that lead to very
accurate predictions, and lay the foundation for the next generation
of machine learning-based bug triaging [3].

3. FUTURE WORK
3.1 Graph-based Metrics as Defect and Main-

tenance Predictors
Graph-based metrics have been used in software maintenance

studies earlier for defect prediction. Zimmermann et al. [10] used
function call graphs to predict the failure probability of files. Pinzger
et al. [9] build networks of developers connected via code arti-
facts to predict failures. Nagappan et al. [7] have used function
call graphs for failure prediction by extracting complexity metrics.
However, none of these studies has proposed any graph-based met-
rics to predict maintenance effort or identify critical spots in the
source code, which are more prone to severe bugs. We plan to
construct graph-based models of the software (function call graphs
and module collaboration graphs) to compute the relations between
various software elements and use novel and existing techniques to
improve software quality and decrease maintenance effort by ana-
lyzing the structure of the software. This work is in progress and we
provide brief discussion of our hypotheses and preliminary results.
Prioritizing bug fixes. When a bug is reported, the maintainers
review the bug and assign it a severity rank based on how badly it
affects the program. For a software provider, it should be a priority
to not only minimize the total number of bugs, but also try to ensure
that those bugs that do occur are low-severity, rather than Blocker
or Critical. To prioritize bug severity, we propose using a metric
called NodeRank to help identify critical functions, i.e., functions
that, when buggy, are likely to exhibit high-severity bugs. Anal-
ogous to the PageRank algorithm [4], our NodeRank algorithm is
a link analysis algorithm that assigns a numerical weight to each
node in a graph, i.e., to each function in the function call graph.
NodeRank measures the relative importance of that node in the
graph, which in our case translates to the importance of that func-
tion in the software. The higher the NodeRank of a function, the
more important it is for the program and, accordingly, any bug as-
sociated with a high-ranked node has high severity. NodeRank can
give maintainers a fast and accurate way of identifying a critical
function or module by knowing its NodeRank. Our preliminary re-
sults suggest that NodeRank is an effective predictor of bug sever-
ity, and can be used to identify “critical” spots in the source code.
Estimating maintenance effort. A leading cause for high
software maintenance costs is the difficulty associated with chang-
ing the source code, e.g., for adding new functionality or refactor-
ing. We propose to identify problematic, difficult-to-change mod-
ules using a module-level metric called Modularity Ratio. We de-
fine the modularity ratio of a module as the ratio between the cou-
pling and the cohesion values of that module. Our preliminary re-
sults have shown that, as the cohesion/coupling ratio increases for
a module (which means the software structure improves), there is
an associated decrease in maintenance effort for that module.
Committer experience vs. bug severity. We want to study
if developer expertise—measured as the number of bugs fixed and

patches committed—correlates with number of bug introducing changes
made by the developer and the average severity of those bugs intro-
duced. Our hypothesis is that code introduced by expert developers
would be less prone to bugs or will introduce bugs of low severity.
Effects of refactoring. We want to identify structural changes
in the call graph that result from refactoring and test how these
changes improved code quality and maintenance. We hypothesize
that functions or modules, which has been refactored will undergo
reduction in average bug severity and maintenance effort in the suc-
ceeding versions.

3.2 Framework to Integrate Software Artifacts
Software projects use different repositories for storing project

and evolution information such as source code, bugs and patches.
An integrated system that combines these multiple repositories,
along with efficient search techniques that can answer a broad range
of queries regarding the project’s evolution history would be ben-
eficial to both software developers (for development and mainte-
nance) and researchers (for empirical analyses). Integrating this
information is a tedious, cumbersome, error-prone process when
done manually, especially for large projects. Previous approaches
to this problem use frameworks that limit the user to a set of pre-
defined query templates, or use query languages with limited power.
In this work, we argue the need for a framework built with re-
cursively enumerable languages that can answer temporal queries,
and supports negation and recursion. As a first step toward such
a framework, we use a Prolog-based system that we built, along
with an evaluation of real-world integrated data from the Firefox
project. Our system allows for elegant and concise, yet powerful
queries, and can be used by developers and researchers for frequent
development and empirical analysis tasks.

4. CONCLUSION
My dissertation will study and propose improvements to the main-

tenance process during software evolution. We plan to use statisti-
cally significant empirical analyses to study software evolution and
maintenance patterns and build frameworks that benefit software
maintenance process and research in empirical studies.

5. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In ICSE, pages 361–370, 2006.
[2] P. Bhattacharya and I. Neamtiu. Assessing programming

language impact on development and maintenance: A study
on C and C++. In ICSE 2011.

[3] P. Bhattacharya and I. Neamtiu. Fine-grained incremental
learning and multi-feature tossing graphs to improve bug
triaging. In ICSM, 2010.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks, 1998.

[5] DedaSys LLC. Programming Language Popularity.
[6] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,

R. Hirschfeld, and M. Jazayeri. Challenges in software
evolution. In IWPSE, 2005.

[7] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. In ICSE ’06.

[8] NIST. The economic impacts of inadequate infrastructure for
software testing. Planning Report, May 2002.

[9] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In FSE, 2008.

[10] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. In ICSE ’08.

