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ABSTRACT
We present several methods for mining knowledge from the
query logs of the MSN search engine. Using the query logs,
we build a time series for each query word or phrase (e.g.,
‘Thanksgiving’ or ‘Christmas gifts’) where the elements of
the time series are the number of times that a query is is-
sued on a day. All of the methods we describe use sequences
of this form and can be applied to time series data gener-
ally. Our primary goal is the discovery of semantically sim-
ilar queries and we do so by identifying queries with similar
demand patterns. Utilizing the best Fourier coefficients and
the energy of the omitted components, we improve upon the
state-of-the-art in time-series similarity matching. The ex-
tracted sequence features are then organized in an efficient
metric tree index structure. We also demonstrate how to ef-
ficiently and accurately discover the important periods in a
time-series. Finally we propose a simple but effective method
for identification of bursts (long or short-term). Using the
burst information extracted from a sequence, we are able to
efficiently perform ’query-by-burst’ on the database of time-
series. We conclude the presentation with the description of
a tool that uses the described methods, and serves as an in-
teractive exploratory data discovery tool for the MSN query
database.

1. INTRODUCTION
Online search engines have become a cardinal link in the

chain of everyday internet experience. By managing a struc-
tured index of web pages, modern search engines have made
information acquisition significantly more efficient. Indica-
tive measures of their popularity are the number of hits that
they receive every day. For example, large search services
such as Google, Yahoo, and MSN each serve results for tens
of millions of queries per day. It is evident that search ser-
vices, aside from their information retrieval role, can also
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act as a data source for identifying trends, periodicities and
important events by careful analysis of the queries.

Retaining aggregate query information, such as the num-
ber of times each specific query was requested every day, is
storage efficient, can accurately capture descriptive trends
and finally it is privacy preserving. This information could
be used by the search service to further optimize their in-
dexing criteria, or for mining interesting news patterns, that
manifest as periodicities or peaks in the query log files.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Query: cinema

Figure 1: Query demand for the word “cinema” for
every day of 2002

As an illustrative example, let’s consider the query “cin-
ema”. In fig. 1 we observe the request pattern for every
day of 2002. We can distinguish 52 peaks that correspond
to each weekend of the year. In fact, similar trends can be
noticed for specific cinemas as well, indicating a clear prefer-
ence of going to the movies during Friday and Saturday. By
distilling such a knowledge, the engineers of a search service
can optimize the search of a certain class of queries, dur-
ing the days that a higher query load is expected. Such a
discussion is out of the scope of this paper, however possi-
ble ways of achieving this could be (for example) enforcing
higher redundancy in their file servers for a specific class of
queries.

While a significant number of queries exhibit strong weekly
periodicities, some of them also depict seasonal bursts. In
fig. 2 we observe the trend for the word “Easter”, where a
clear accumulation of the queries during the relevant months,
followed by an immediate drop after Easter. On a similar
note, the query “Elvis” experiences a peak on 16th Aug. ev-
ery year (fig. 3), which happens to be the death anniversary
of Elvis Presley.

The above examples are strong indicators about the amount
of information that can be extracted by close examination
of the query patterns. To summarize, we believe that past
query logs can serve 3 major purposes:

1. Recommendations (the system can propose alternative
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Query: Easter

Figure 2: Search pattern for the word “easter” dur-
ing 2002
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Query: Elvis

Figure 3: The demand for query “elvis” for every
day of 2002

or related keywords, that depict similar request pat-
terns)

2. Discovery of important news (burst of a specific query)

3. Optimization of the search engine (place similar queries
in same server, since they are bound to be retrieved to-
gether)

In the following sections we will explain how one can ex-
tract useful information from query logs, in general, and the
MSN query logs, in particular.

1.1 Contributions
This paper makes three main contributions. First we de-

velop new compressed representations for time-series and an
indexing scheme for these representations. Because the data
we are dealing with tend to be highly periodic, we describe
each time-series using the k best Fourier coefficients (instead
of the frequently used first ones). In this manner we are able
to provide the tightest yet lower and upper bounds on eu-
clidean distance between time-series. We demonstrate how
this representation can be indexed using a variation of a
metric tree. The index is very compact in size and exhibits
strong pruning power due to the bounds that we provide.
The new algorithms described in the paper, are presented
in terms of Fourier coefficients but can be generalized to any
orthogonal decomposition with minimal or no effort. Our
second contribution is an ‘automatic’ method for discover-
ing the number of significant periods. Our final contribution
is a simple yet effective way to identify bursts in time-series
data. We extract burst features that can later be stored in
a relational database and subsequently be used to perform
‘query-by-burst’ searches, that is, used to find all sequences
that have a similar pattern of burst behavior.

The paper roadmap is as follows: In Section 2, we describe
various tools for analyzing time-series including the Discrete
Fourier Transform (DFT) and the power spectral density.
In Sections 3 and 4, we describe our approach to efficiently
representing, storing and indexing a large collection of time-
series data. In Section 5, we develop a method for identifying
significant periodicities in time-series. In Section 6, we de-
scribe a simple but effective approach to burst detection in
time-series and its application to ‘query-by-burst’ searching

of a collection of time-series. Finally, in Sections 7 and 8,
we experimentally demonstrate the effectiveness of the pro-
posed methods and discuss directions for future work.

2. SPECTRAL ANALYSIS
We provide a brief introduction to the Fourier decompo-

sition, which we will later use for providing a compressed
representation of time-series sequences.

2.1 Discrete Fourier Transform
The normalized Discrete Fourier Transform (DFT) of a

sequence x(n), n = 0, 1 . . . N−1 is a vector of complex num-
bers X(f):

X(fk/N ) =
1√
N

N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1 . . . N − 1

We are dealing with real signals, therefore the coefficients
are symmetric around the middle one. What the Fourier
transform attempts to achieve is, to represent the origi-
nal signal as a linear combination of the complex sinusoids

sf (n) = ej2πfn/N√
N

. Therefore, the Fourier coefficients repre-

sent the amplitude of each of these sinudoids, after signal x
is projected on them.
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Figure 4: Decomposition of a signal into the first 7
DFT components

2.2 Power Spectral Density
In order to accurately capture the general shape of a time-

series using a spartan representation, one could reconstruct
the signal using just its dominant frequencies. By dominant
we mean the ones that carry most of the signal energy. A
popular way to to identify the power content of each fre-
quency is by calculating the power spectral density PSD (or
power spectrum) of a sequence which indicates the signal
power at each frequency in the spectrum. A well known es-
timator of the PSD is the periodogram. The periodogram
P is a vector comprised of the squared magnitude of the
Fourier coefficients:



P (fk/N) = ‖X(fk/N )‖2, k = 0, 1 . . . �N − 1

2
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Notice that we can detect frequencies that are at most half
of the maximum signal frequency, due to the Nyquist fun-
damental theorem. The k dominant frequencies appear as
peaks in the periodogram (and correspond to the coefficients
with the highest magnitude). From here on, when we refer
to the best or largest coefficients, we would mean the ones
that have the highest energy and correspond to the tallest
peaks of the periodogram.

3. COMPRESSED REPRESENTATIONS FOR
PERIODIC DATA

In this section, we describe several compressed representa-
tions for periodic data. Our primary goal is to support fast
similarity searches for periodic data. To that end, we want
our compressed representation to support approximate Eu-
clidean distance computations, and, more specifically, good
upper and lower bounds on the actual Euclidean distance be-
tween a compressed representation and a query point. For
each of the representations, we provide algorithms to com-
pute upper and lower bounds. Throughout the presentation
we refer to Fourier coefficients because we concentrate on
periodic data, however, our algorithms can be adapted to
any class of orthogonal decompositions (such as wavelets,
PCA, etc.) with minimal or no adjustments.

3.1 First or Best Coefficients?
The majority of the approaches that attempt to speed-up

similarity search are based on the work of Agrawal et al.
[1], where the authors lower bound the Euclidean distance
using the first k Fourier coefficients. The authors use the
name GEMINI to describe their generic framework for lower
bounding the distance and utilizing a multidimensional in-
dex for candidate retrieval. Rafiei et al. [13] improve on this
method by exploiting the symmetry of the Fourier coeffi-
cients and, thus, provide an even tighter lower bound (using
the same number of coefficients). We will refer to this lower
bound using the symmetric property as LB-GEMINI.

A later enhancement to this paradigm appears in [14] by
Wang & Wang. The authors, in addition to the first coef-
ficients, also record the error of the approximation to the
original sequence. Using this extra information, the authors
provide a tighter lower bound (LB-Wang) and an upper
bound (UB-Wang).

athens 2004

E=72.0

E=65.5

bank

E=120.2

E=48.2

cinema

E=108.0

E=52.8

president

E=92.3

E=45.7

Figure 5: A comparison of using the first coefficients
vs best coefficients in reconstructing the time-series
for four queries. Using the best coefficients can sig-
nificantly reduce the reconstruction error.

All of the above methods inherently suffer from the as-
sumption, that the first coefficients describe adequately the
decomposed signal. While this may be true for some time-
series such as random walks, it is not true for many time-
series that exhibit strong periodicities. In such sequences
most of the power is not concentrated in the low frequency
components, but is dispersed at various frequencies of the
spectrum. Figure 5 depicts the reconstruction error E to the
original sequence when using the 5 first Fourier coefficients
against the 4 best (the explanation of space requirement for
each method will be deferred until later). It is evident that
using the coefficients with the most power yields superior
reconstruction even when using fewer components.

The observation that it is best to represent a signal using
the largest coefficients of a DFT (or other orthogonal de-
composition) is not novel. For instance, Wu et al. [15] note
that choosing the best coefficients can be a fast and powerful
alternative to SVD for searching images. It is also useful to
note that in addition to providing a tighter distance approx-
imation, the use of the best coefficients, has the advantage of
offering an immediate overview of the periodic components
of the data.

3.2 Notation
We will present our algorithms for lower bounding the Eu-

clidean distance, using the best coefficients to approximate
a sequence. We begin with some notation first.

We denote a time-series by t = {t1, t2, . . . , tn} and the
Fourier transformation of t by the capital letter T . The
vector describing the positions of the k largest coefficients
of T is denoted as p+, while the positions of the remaining
ones as p− (that is p+, p− ⊂ [1, . . . , n]). For any sequence T ,
we will store in the database the vector T (p+) or equivalently
T+. Now if Q is a query in the transformed domain, then
Q(p+) (or Q+) describes a sequence holding the equivalent
coefficients as the vector T (p+). Similarly, Q(p−) ≡ Q− is
the vector holding the analogous elements of T (p−) ≡ T−.

Example: Suppose T = {(1+2i), (2+2i), (1+i), (5+i)} and
Q = {(2+2i), (1+i), (3+i), (1+2i)}. The magnitude vector
of T is: abs(T ) = {2.23, 2.82, 1.41, 5.09}. Then, p+ = {2, 4},
T (p+) = {(2 + 2i), (5 + i)} and Q(p+) = {(1 + i), (1 + 2i)}.
3.3 Algorithm BestMin

In order to speedup similarity search, we compute a lower
bound of the Euclidean distance between the compressed
representation T (p+) and the full query dataQ = {Q(p+), Q(p−)}.
The squared Euclidean distance is defined as:

D(Q,T )2 = D(Q(p+), T (p+))2 +D(Q(p−), T (p−))2

= ‖Q(p+) − T (p+)‖2 + ‖Q(p−) − T (p−)‖2
(1)

The computation of the first part of the distance is trivial
since we have all the required data. For the second part
we are missing the term T (p−), the discarded coefficients.
Because we select the best coefficients, we know that the
magnitude of each of the coefficients in T (p−) is less than the
smallest magnitude in T (p+). We use minPower = ‖T+

min‖
to denote the magnitude of the smallest coefficient in T (p+).

Fact 1. [minProperty] The magnitude of all coefficients
in T (p−) is less than the minimum magnitude of any coeffi-
cient in T (p+) (by construction). That is: ‖T+

min‖ ≥ ‖T−
i ‖.



We can use this fact to lower bound D(Q−, T−)2.

‖Q− − T−‖2 =
∑

i∈p−
‖Q−

i − T−
i ‖2 (2)

Every element of the sum will be replaced by something
of smaller (or equal) value.

‖Q−
i − T−

i ‖ ≥ ‖Q−
i ‖ − ‖T−

i ‖ (triangle inequality)

‖Q−
i − T−

i ‖ + ‖T+
min‖ ≥ ‖Q−

i ‖ − ‖T−
i ‖ + ‖T−

i ‖ (minProperty)

‖Q−
i − T−

i ‖ ≥ ‖Q−
i ‖ − ‖T+

min‖
The distance LB BestMin, named for its use of the best

(largest) coefficients and the minProperty, is a lower bound
of the Euclidean distance and defined as follows:

LB BestMin(Q,T )2 =

∑ 

‖Qi − Ti‖2 if i ∈ p+

(‖Qi‖ − ‖T+
min‖)2 if i ∈ p− and ‖Qi‖ ≥ ‖T+

min‖
0 if i ∈ p− and ‖Qi‖ < ‖T+

min‖
Similarly, we can define an upper bound to the Euclidean

distance as follows:

UB BestMin(Q,T )2 =
∑ {

‖Qi − Ti‖2 if i ∈ p+

(‖Qi‖ + ‖T+
min‖)2 if i ∈ p−

||T min
+ ||

||Q i
− ||

||T
i
−||

MINDIST(Q
i
−, T

i
−) = ||Q

i
−|| − ||T

min
+ ||

ℑ

ℜ

D(Q i
− , T i

− )

||T min
+ ||

||Q i
− ||

||T
i
−||

MAXDIST(Q
i
−, T

i
−) = ||Q

i
−|| + ||T

min
+ ||

ℑ

ℜ

D(Q i
− , T i

− )

Figure 6: BestMin Explanation. All points T−
i lie

within the circle of radius ‖T+
min‖. Left: The min-

imum possible distance between any point Q−
i and

T−
i happens when the 2 vectors are aligned and then
their distance simply is ‖Q−

i ‖ − ‖T−
i ‖. Right: The

maximum distance is ‖Q−
i ‖ + ‖T−

i ‖.

3.4 Algorithm BestError
In this section, we describe the BestError algorithm. This

algorithm typically provides a looser lower bound than the
BestMin algorithm and is presented to facilitate the under-
standing of the BestMinError algorithm described in the
next section. In this algorithm we utilise an additional quan-
tity T.err = ‖T−‖2 the sum of squares of the omitted coeffi-
cients. This quantity represents the error in the compressed
representation, or, equivalently, the amount of energy in the
coefficients not represented. For this algorithm we only use
knowledge of T.err and ignore any additional constraints
such as the minProperty, thus the algorithm could be ap-
plied when coefficients other than the best coefficients are
chosen.

1 [LB, UB] = BestMin(Q,T)
2 {
3 LB = 0; // lower bound
4 UB = 0; // upper bound
5 DistSq = 0; // distance of best coefficients
6 minPower = min(abs(T)); //smallest best coeff
7
8 for i = 1 to length(Q)
9 {
10 if T[i] exists
11 // i is a coefficient used
12 // in the compressed representation
13 DistSq += abs(Q[i] - T[i])^2;
14 else
15 {
16 // lower bound
17 if (abs(Q[i]) > minPower)
18 LB += (abs(Q[i]) - minPower)^2;
19
20 //upper bound
21 UB += (abs(Q[i]) + minPower)^2;
22 }
23 }
24 LB = sqrt(DistSq + LB);
25 UB = sqrt(DistSq + UB);
26 }

Figure 7: Algorithm BestMin

To obtain the lower bound for the quantity of interest we
use the inequality ‖Q−−T−‖ ≥ ‖Q−‖−‖T−‖ and for the up-
per bound we use the inequality ‖Q− −T−‖ ≤ ‖Q−‖+ ‖T−‖
. These inequalities yield the following upper and lower
bounds when using the best coefficients and the approxima-
tion error.

{
LB BestError(Q,T )2 = ‖(Q+ − T+)‖2 + (‖Q−‖ − ‖T−‖)2
UB BestError(Q,T )2 = ‖(Q+ − T+)‖2 + (‖Q−‖ + ‖T−‖)2

Note that these measures are analogous to what had been
proposed in [14] but for the case of best coefficients.

1 [LB, UB] = BestError(Q,T)
2 {
3 // In this approach we store the sum of squares
4 // of the coefficients not in the compressed
5 // representation for T in T.err
6 Q.err = 0 // used to store unused energy of Q
7 DistSq = 0; // distance of best coefficients
8 for i = 1 to length(Q)
9 {
10 if T[i] exists
11 {
12 // i is a coefficient used
13 // in the compressed representation
14 DistSq += abs(Q[i] - T[i])^2;
15 }
16 else
17 {
18 Q.err += abs(Q[i])^2;
19 }
20 }
21
22 LB = sqrt(DistSq +(sqrt(Q.err)-sqrt(T.err))^2;
23 UB = sqrt(DistSq +(sqrt(Q.err)+sqrt(T.err))^2;
24 }

Figure 8: Algorithm BestError

3.5 Algorithm BestMinError
Our last algorithm is the BestMinError algorithm that

uses the best coefficients and both the minProperty and



T.err to obtain a tighter lower bound. The algorithm is
described in Figure 9. The algorithm is somewhat more
complicated than the previous algorithms and we provide
some intuitions to aid the reader. The basic idea is to com-
pute a lower and an upper bound of this quantity iteratively.
For each coefficient not in the compressed representation we
consider two cases:

Case 1: When Q[i] > minPower we use the
minProperty. We are certain that we can increment
the distance by (abs(Q[i]) − minPower)2 for this coef-
ficient (line 24). For the lower bound, the most optimistic
case is when this is precisely this distance and “use” pre-
cisely minPower energy (line 26). Note that using this
metaphor we would also say that we have used all of the
energy in Q[i]. For the upper bound, the worst case is
that we have use none of the energy from T.err.

Case 2: When Q[i] ≤ minPower the minProperty does
not apply. In this case we increment the count of unused
energy from Q by the size of Q[i] (line 30).

Roughly, we compute the lower and upper bound by using
the upper and lower bound from the BestError case with
the unused energies. More specifically, for the lower bound,
we add the distance computed for the known coefficients,
the distance computed in case 1 and the best-case distance
using the overestimate of the unused energy from the missing
coefficients of T . Similarly for the upper bound, we combine
these quantities but use an underestimate of the amount of
energy used namely T.err.

1 [LB, UB] = BestMinError(Q,T)
2 {
3 // In this approach we store the sum of squares
4 // of the coefficients not in the compressed
5 // representation for T in T.err
6 LB = 0; // lower bound
7 DistSq = 0; // distance of best coefficients
8 Q.nused = 0; // energy of unused coeffs for Q
9 T.nused = T.err; // energy left for lower bound
10
11 minPower = min(abs(T)); //smallest best coeff
12
13 for i = 1 to length(Q)
14 {
15 if T[i] exists
16 // i is a coefficient used
17 // in the compressed representation
18 DistSq += abs(Q[i] - T[i])^2;
19 else
20 {
21 // lower bound
22 if (abs(Q[i]) > minPower)
23 {
24 LB += (abs(Q[i]) - minPower)^2;
25 // at most minPower used
26 T.nused -= minPower^2;
27 }
28 else
29 // this energy wasn’t used
30 Q.nused += abs(Q[i])^2;
31 }
32 }
33
34 // have we used more energy than we had?
35 if (T.nused < 0) T.nused = 0;
36
37 UB=sqrt(DistSq+LB+(sqrt(Q.nused)+sqrt(T.err))^2);
38 LB=sqrt(DistSq+LB+(sqrt(Q.nused)-sqrt(T.nused))^2);
39 }

Figure 9: Algorithm BestMinError

4. INDEX STRUCTURE
All of the algorithms proposed in section 3, use a different

set of coefficients to approximate each object, thus making
difficult the use of traditional multidimensional indices such
as the R*-tree [2]. Moreover, in our algorithms we use all
the query coefficients in the new projected orthogonal space,
making the adaptation of traditional space partition indices
almost impossible.

We overcome these challenges by utilizing a metric tree as
the basis of our index structure. Metric trees do not cluster
objects based on the values of the selected features but on
relative object distances. The choice of reference objects,
from which all object distances will be calculated, can vary
in different approaches. Examples of metric trees include
the Vp-tree [16], M-tree [7] and GNAT [4]. All variations
of such trees, exploit the distances to the reference points
in conjunction with the triangle inequality to prune parts
of the tree, where no closer matches (to the ones already
discovered) can be found.

In this work we will use a customized version of the VP-
tree (vantage point tree). The superiority of the VP-tree
against the R*-tree and the M-tree, in terms of pruning
power and disk accesses, was clearly demonstrated in [5].
Here, for simplicity, we describe the modifications in the
search algorithms for the structure of the traditional static
binary VP-tree. However all possible extensions to the VP-
tree, such as the usage of multiple vantage points [3] or ac-
commodation of insertion and deletion procedures [5] can
be implemented on top of the proposed search mechanisms.
We provide a brief introduction to the Vp-tree structure,
and we direct the interested reader to [6], for a more thor-
ough description.

4.1 Vantage Point Tree
In this section, we adapt the notation of [6]. At every

node in a VP-tree there is a vantage point (reference point).
The vantage point is used to divide all of the points asso-
ciated with that node of the tree into two equal-sized sets.
More specifically, the distances of points associated with the
vantage point are sorted and the points with distance less
than the median distance µ are placed in the left subtree
(subset S≤), and the remaining ones in the right subtree
(subset S>).

To construct a VP-tree for a dataset one simply needs to
choose a method for selecting a vantage point from a set
of points and to use this method recursively to construct a
tree. We use a heuristic method to pick vantage point in
constructing VP-trees. In particular, we choose the point
that has the highest deviation of distances to the remaining
objects. This can be viewed as an analogue of the largest
eigenvector in SVD decomposition.

Suppose that one is searching for the 1-Nearest-Neighbor
(1NN) to the query Q and its distance to a vantage point
is DQ,V P . If the best-so-far match is σ we only need to to
examine both subtrees if µ − σ < DQ,V P < µ + σ. In any
other case we only have to examine one of the subtrees.

Typically VP-trees are built using the original data, that
is, the vantage points are not compressed representations.
In our approach, we adapt the VP-tree to work with a com-
pressed representation. By doing so we significantly reduce
the amount of space needed for the index. Of course, the
downside of using a compressed representation as the van-
tage points is that the distance computation is no longer
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Figure 10: (a) Separation into two subsets according
to median distance, (b) Pruning in VP-tree using
exact distances, (c) Pruning in VP-tree using upper
and lower bounds

exact and we must resort to using bounds. Our approach is
to construct the VP-tree using an uncompressed represen-
tation and, then, after it is constructed, convert the vantage
points to the appropriate compressed representation and ID
of the original object (time series). By doing so, we obtain
exact distances during the construction process. One can
optimize this process slightly by compressing a point imme-
diately after it is selected to be a vantage point.

We will modify the knn search algorithm to utilize the
lower and upper bounds of the uncompressed query Q to
a compressed object (whether this is vantage point or leaf
object). So, suppose for the best-so-far match we have a
lower bound σLB and a upper bound σUB . We will only
visit the left subtree if the upper bound distance between Q
and the current vantage point V P is: UBQ,V P < µ− σUB .
This happens since for any R ∈ S> the distance between R
and Q is:

D(Q,R) ≥ |D(R, V P ) −D(Q,V P )| (triangle inequality)

≥ |µ−D(Q,V P )| (by construction)

≥ |µ− UB(Q,V P )|
> |µ− (µ− σUB)| (assumption)

= σUB

and since our best match is less than σUB this part of the
tree can be safely discarded. In a similar way we will only
traverse the right subtree (S>) if the lower bound between
Q and V P is: LBQ,V P > µ+ σUB. For any other case both
subtrees will have to be visited (fig. 10 (c))

The index scan is performed using a depth-first traversal,
and σLB , σUB are updated both by compressed objects in
the leaves as well as by the vantage points. Additionally, as
an optimization, the search is heuristically ‘guided’ towards
the most promising nodes. Our heuristic works as follows:
Consider the annulus (disc with a smaller disc removed) de-
fined by the upper and lower bounds for a query centered
around the current vantage point. We can divide this area
into two areas (one of them possibly empty); one region in
which the points that are further away than the median µ
from the current vantage point and one in which the points
are closer than the median. Each child of the current van-
tage point is naturally associated with one of these regions
and we choose the child node associated with the region of
larger size. Suppose, for example, that the lower and up-
per bounds of the query with respect to the current vantage
point are in the range [LB-UB], as shown by the gray line
in fig. 10(c). Because the distance range overlaps more with

the subset S≤, we should follow this subset first. It seems
likely that this approach will find a good match sooner and
leading to quicker pruning of other parts of the tree.

Even though we prune parts of the tree using the upper
bound σUB of the best-so-far match (and not the exact dis-
tance) the pruning power of the index is kept very high,
because the use of algorithm BestMinError can provide
a significantly tight upper bound. This will be explicitly
demonstrated in the experimental section.

After the tree traversal we have a set of compressed ob-
jects with their lower and upper bounds. The smallest upper
bound (SUB) is computed and all objects with lower bound
higher than SUB are excluded from examination. The full
representation of the remaining objects is retrieved from the
disk, in the order suggested by their lower bounds. A simple
version of the 1NN search (without the traversal to the most
promising node) is provided in fig. 11.

5. DETECTING IMPORTANT PERIODS
Using the periodogram we can visually identify the peaks

as the k most dominant periods (period =1/frequency). How-
ever, we would like to have an automatic method that will
return the important periods for a set of sequences (e.g.,
for the knn results). What we need is to set an appropri-
ate threshold in the power spectrum, that will accurately
distinguish the dominant periods. We will additionally re-
quire that this method not only identifies the strong periods,
but also reduces the number of false alarms (i.e., it doesn’t
classify unimportant periods as important).

5.1 Number of significant periods
Next we devise a test to separate the important periods

from the unimportant ones. To do so one needs to specify
exactly what is meant by a non-periodic time series. Our
canonical model of a non-periodic time-series is a sequence
of points that are drawn independently and identically from
a Gaussian distribution. Clearly this type of sequence can
have no meaningful periodicities. In addition, under this as-
sumption, the magnitudes of the coefficients of the DFT are
distributed according to an exponential distribution. Even
when the assumption of i.i.d. Gaussian samples does not
hold, it is often the case that the histogram of the coefficient
magnitudes has an exponential shape. Fig. 12 illustrates
this for several non-periodic time series. Our approach is to
identify significant periods by identifying outliers according
to an exponential distribution.

Starting from the probability distribution function of the
exponential distribution, we derive the cumulative distribu-
tion function:

f(x) = λe−λx ⇒
P (x ≥ A) = 1 −

∫ ∞

0

f(x)dx = e−λx

where λ is the inverse of the average value. The important
periods will have powers that deviate from the power con-
tent of the majority of the periods, therefore we will seek
for infrequent powers. Consequently, we will set this proba-
bility p to a very low value and calculate the derived power
threshold. For example, if we want to be confident with
probability 99.99% that the returned periods will be sig-
nificant we have: (100 − 99.99)% = 0.01% = 0.0001, and



NNSearch(Q)
{
Input: Uncompressed Query Q
Output: Nearest Neighbor

S <- Search(root-of-index, Q)
// S = set of compressed objects returned from
// tree traversal with associated
// lower (S.LB) and upper bounds (S.UB)

SUB = min(S(i).UB); // smallest upper bound
Delete({S(i) | S(i).LB> SUB}); // prune objects
Sort(S(i).LB); // sort by lower bounds

bestSoFar.dist = inf;

for i=1 to S.Length
{

if S(i).LB > bestSoFar.dist
return bestSofar

retrieve uncompressed time-series T
of S(i) from database

dist = D(T,Q); // full euclidean

if dist < bestSoFar
{

bestSoFar.dist = dist;
bestSoFar.ID = T;

}
}

}

Search(node,Q)
{
Input: Node of Vp-tree, uncompressed query Q
Output: set of unpruned compressed objects with
associated lower and upper bounds

if node is leaf
{

for each compressed time-series cT in node
{

(LB,UB) <- BestMinError(cT,Q);
queue.push(cT,LB,UB); // sorted by UB

}
}
else // vantage point
{

(LB,UB) <- BestMinError(VP,Q);
queue.push(VP,LB,UB);
sigmaUB = queue.top; // get best upper bound

if UB < node.median - sigmaUB
search(node.left,Q);

if LB > node.median + sigmaUB
search(node.right,Q);

}
}

Figure 11: 1NN Search for VP-tree with compressed
objects

the power probability is set to 10−4. Solving for the power
threshold Tp we get:

ln(p) = ln(e−λTp) = −λTp ⇒

Tp = − ln(p)

λ
= −µ · ln(p)

and µ is the average signal power. For example for con-
fidence 99.99%, p = 10−4 and if the average signal power
0.02 (= 1/n

∑
i x

2
i ), then the power density threshold value

is Tp = 0.0184.

Examples: We demonstrate the accuracy and usefulness

Sequence 1 PSD histogram 1

Sequence 2 PSD histogram 2

Sequence 3 PSD histogram 3

Figure 12: Typical histogram of power spectrum for
various non-periodic sequences follow an exponen-
tial distribution

of the proposed method with several examples. In fig. 13
we juxtapose the demand of various queries during 2002
with the periods identified as important. We can distin-
guish a strong weekly component for queries ‘cinema’ &
‘nordstrom’, while for ‘full moon’ the monthly periodicity
is accurately captured. For the last example we used a se-
quence without any clear periodicity and again our method
is robust enough to set the threshold high enough, therefore
avoiding false alarms. The large peak in the data happens
during the day the famous British actor died, and of course
its identification is important for the discovery of important
(rare) events. We will expound how to discover such (or
more subtle) bursts in the following section.
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Figure 13: Discovered periods for four queries using
the power density threshold

6. BURST DISCOVERY



Our final method for knowledge extraction, involves the
detection of bursts. In the setting of this work, interactive
burst discovery will involve three tasks; first we have to de-
tect the bursts, then we need to compact them, in order to
facilitate an efficient storage scheme in a DBMS system and
finally based on compacted features we can pose queries in
the system (‘query-by-burst’). The query-by-burst feature
can be thought of as a fast alternative of weighted Euclidean
matching, where the focus is given on the bursty portion
of a sequence. Compared to the work of Zhu & Shasha
[17], our approach is more flexible since it does not require
a custom index structure, but can easily be integrated in
any relational database. Moreover, our framework requires
significantly less storage space and in addition we can sup-
port similarity search based on the discovered bursts. Our
method is also simpler and less computationally intensive
than the work of [11], where the focus is on the modeling of
text streams.

6.1 Burst Detection
For discovering regions of burst in a sequence, our ap-

proach is based on the computation of the moving aver-
age (MA), with a subsequent annotation of bursts as the
points with value higher than x standard deviations above
the mean value of the MA. More concretely:

1. Calculate Moving Average MAw of length w

for sequence t = (t1, ...tn).
2. Set cutoff = mean(MAw) + x*std(MAw)

3. Bursts = {ti| MAw(i) > cutoff }
For our database we used sliding windows of two lengths
w; one used a moving average of 30 days (long-term bursts)
and one a 7 day moving average (short-term bursts), which
we found to cover sufficiently well the bursts ranges in the
database sequences. Typical values for the cutoff point are
1.5-2 times the standard deviation of the MA. In fig. 14,
we can see a run of the above algorithm on the query ‘Hal-
loween’ during the year 2002. We observe that the burst dis-
covered is indeed during the October and November months.
In fig. 15 another execution of the algorithm is demon-
strated, this time for the word “Easter”, during a span of
three years.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Halloween

Data
Moving Average
Cutoff

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Data
Burst

Figure 14: User demand for the query ‘Halloween’
during 2002 and the bursts discovered

6.2 Burst Compaction
We would like to identify in an large database, sets of

sequences that exhibit similar burst patterns. In order to

2000 2001 2002

Easter 2000−2002

Data
Moving Average
Cutoff

2000 2001 2002

Data
Burst

Figure 15: History of the query ‘Easter’ during the
years 2000-2002 and the bursts discovered

speedup this process, we choose not to store all points of
the bursty portion of a sequence, but we will perform some
kind of feature compaction.

For this purpose, we represent each consecutive sequence
of values identified as a burst, by their average value. Sup-
pose, for example, that B(X) = (xp, . . . , xp+k, xq, . . . , xq+m)
signify the points identified as bursts on a sequence X =
(x1, x2, . . . , xn). In this case, sequence B contains two burst
regions and the compact form of the burst is:

B(X) = (
︷ ︸︸ ︷
xp, xp+1 . . . xp+k,

︷ ︸︸ ︷
xq, xq+1 . . . xq+m)

= (B
(X)
1 , B

(X)
2 )

= ([p, p+ k,
1

p+ k − 1

p+k∑
i=p

xi], [q, q +m,
1

q +m− 1

q+m∑
i=q

xi])

In other words, each burst is characterized by a triplet [start-
Date, endDate, average value], indicating the start and end-
ing point of the burst, and the average burst value during
that period, respectively. The length of a burst B will be
indicated by |B| = endDate− startDate+ 1.

The burst triplets of each sequence can now be stored as
records in a DBMS table with the following fields:

[sequenceID, startDate, endDate, average burst

value]

In fig. 16 we elucidate the compact burst representation,
as well as the high interpretability of the results. For the
query ‘flowers’, we discover two long-term bursts during the
months February and May. This is consistent with our ex-
pectation that flower demand tends to peak during Valen-
tine’s Day and Mother’s Day. For the query ‘full moon’
(using short term burst detection) we can effectively distuin-
guish the monthly bursts (that is once for every completion
of the moon circle).

6.3 Burst Similarity Measures
Now we will define the similarity Bsim between the burst

triplets. Let time-series X and Y and their respective set of

burst features B(X) = (B
(X)
1 , . . . , B

(X)
k ) and

B(Y ) = (B
(Y )
1 , . . . , B

(Y )
m ). We have :

BSim =
k∑

i=1

m∑
j=1

intersect(B
(X)
i , B

(Y )
j ) ∗ similarity(B

(X)
i , B

(Y )
j )
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Query *flowers*
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Query *Full Moon*

Discovered Bursts 

Figure 16: Compact burst representation by us-
ing the average value of the bursts, and high in-
terpretability of the discovered bursts.

where similarity captures how close the average burst val-
ues are:

similarity(B
(X)
i , B

(Y )
j ) =

1

1 + dist(B
(X)
i , B

(Y )
j )

=
1

1 + (avgV alue(B
(X)
i ) − avgV alue(B

(Y )
j )

and intersect returns the degree of overlap between the
bursts:

intersect =
1

2
(
overlap(B

(X)
i , B

(Y )
j )

|B(X)
i |

+
overlap(B

(X)
i , B

(Y )
j )

|B(Y )
j |

)

The function overlap simply calculates the time intersec-
tion between two bursts. fig. 17 briefly demonstrates for
bursts A,B the calculation of overlap(A,B).
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B
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B B

overlap(A,B) overlap(A,B)

dist(A,B)

overlap(A,B) = 0

Figure 17: Burst overlaps between time-series

Before the burst features are extracted, the data are stan-
dardized (subtract mean, divide by std) in order to compen-
sate for the variation of counts for different queries.

Execution in a DBMS system: Since all identified burst
features are stored in a database system, it is very efficient to
discover burst features that overlap with the query’s bursts.

In fig. 18 we illustrate the search for overlapping bursts.
Essentially we need to discover features with startDate ear-
lier than the ending date of the query burst and with endDate
later than the burst starting date. This procedure is ex-
tremely efficient, if we create an index (basically a B-tree)
on the startDate and endDate attributes. For the qualify-
ing burst features, the similarity measures are accordingly
calculated for their respective sequences as described.

startDate
endDate

Query
Burst Q

SELECT Burst B 
FROM Database
WHERE B.startDate<Q.endDate

AND
B.endDate>Q.startDate

Database

 Bursts B

Figure 18: Identifying Overlapping Bursts in a
DBMS

In fig. 19 we show some results of burst similarity mea-
sure. It is prevalent that ‘query-by-burst’ can be a powerful
asset for our knowledge discovery toolbox. This type of rep-
resentation and approach to search is especially useful for
finding matches for time series with non-periodic bursts.

7. EXPERIMENTAL EVALUATION
Now we will demonstrate with extensive experiments the

effectiveness of the new similarity measures and compare
their performance with other widely used Euclidean approx-
imations. We also exhibit that our bounds lead to good
pruning performance and that our approach to indexing has
good performance on nearest neighbor queries.

For our experiments all sequences had length of 1024 points,
capturing almost 3 years of query logs (2000-2002). The
dataset sizes range up to 215 time-series, effectively con-
taining more than 30 million daily measurements in our
database. All sequences were standardized and the queries
were sequences not found in the database. The experiments
have been conducted on a 2Ghz Intel Pentium 4, with 1GB
of RAM and 60GB of secondary storage.

7.1 Space Requirements
For fair comparison of all competing methods, it is imper-

ative to judge their performance when the same amount of
memory is alloted for the coefficients of each approach.

The storage of the first k Fourier coefficients requires just
2k doubles (or 2k*8 bytes). However, when utilizing the
k best coefficients for each sequence, we also need to store
their positions in the original DFT vector. That is, the
compressed representation with the k largest coefficients is
stored as pairs of [position-coefficient].

For the purposes of our experiments 2048 points are more
than adequate, since they capture more than 5 years of log
data for each query. Taking under account the symmetric
property we just need to store 1024 positions, so 10 bits
would be sufficient. However, since on disk we can write
only as multiples of bytes, each position requires 2 bytes. In
other words, each coefficient in our functions requires 16+2
bytes, and if GEMINI uses k coefficients, then our method
will use �16k/18� = �k/1.125� coefficients.

For some distance measures we also use one additional
double to record the error (sum of squares of the remain-
ing coefficients). Therefore, for the measures that don’t use
the error we need to allocate one additional number and we
choose this to be the middle coefficient of the full DFT vec-
tor, which is a real number [12] (since we have real data with
lengths power of two). If in some cases the middle coefficient
happens to be one of the k best ones, then these sequences
just use 1 less double than all other approaches. The follow-
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Figure 19: Three examples of ‘query-by-burst’. We depict a variety of interesting results discovered when
using the burst similarity measures.

ing table summarizes how the same amount of memory is
allocated for each compressed sequence of every approach.

GEMINI c First Coeffs + Middle Coeff
Wang c First Coeffs + Error
BestMin �c/1.125� Best Coeffs + Middle Coeff
BestError �c/1.125� Best Coeffs + Error
BestMinError �c/1.125� Best Coeffs + Error

Table 1: Requirements for usage of same storage for
each approach

Therefore, when in the following figures we mention mem-
ory usage of [2*(32)+1] doubles, the number in parenthesis
essentially denotes the coefficients used for the GEMINI and
Wang approach (+ 1 for the middle coefficient or the error,
respectively). For the same example, our approach uses the
28 best coefficients but has the same memory requirements.

7.2 Tightness of Bounds
This first experiment measures the tightness of the lower

and upper bounds of our algorithms. We compare with the
approaches that utilize the first coefficients (GEMINI) and
with the bounds proposed by Wang using the first coeffi-
cients in conjunction with the error.

In figures 20 and 21 we show the lower and upper bounds
for all approaches in conjunction with the actual Euclidean
distance. The distance shown is the cumulative euclidean
distance over 100 random pairwise distance computations
from the MSN query database. First, observe that the
BestMinError provides the best improvement. Second, the
Wang approach provides the best approximation when the
first coefficients are used. Using BestMinError there is a
noticeable 6-9% improvement in the lower bound and a 13-
18% improvement in the upper bounds, compared to the
next best method (LB Wang). However, as we will see in
the following section, this improvement in distance leads
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Figure 20: Lower Bounds: The methods taking ad-
vantage of the best coefficients (and especially Best-
MinError) outperform the approaches using the first
coefficients.
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Figure 21: In the calculation of Upper Bounds, Best-
MinError provides the tightest Euclidean approxi-
mation

to a significant improvement in pruning power. For the
remainder of the paper we do not report results for the
BestMin and BestError methods due to the superiority
of the BestMinError method.

7.3 Pruning Power
We evaluate the effectiveness the Euclidean distance bounds

in a way that is not effected by implementation details or
the use of an index structure. The basic idea is to measure



the average fraction F of the database objects examined in
order to find the 1NN for a set of queries. In order to
compute F for a given query Q, we first compute the lower
and upper bound distances to Q for each object using its
compressed representation. Note that we do not compute
an upper bound for GEMINI. We find the smallest upper
bound (SUB) and objects that have LowerBound > SUB
are pruned. For the remaining sequences the full representa-
tions are retrieved from disk and compared with the query,
in increasing order as suggested by the lower bounds. We
stop examining objects, when the current lower bound is
higher than the best-so-far match. Similar methods for eval-
uation have also appeared in [8, 10].

The results we present are for a set of 100 randomly se-
lected queries not already in the database. Fig. 22 shows
the dramatic reduction in the number of objects that need
to be examined, a reduction that ranges from 10-35% com-
pared to the next best method. These positive effects can
be attributed to four reasons:

• Our methods make use of all coefficients of a query,
thus giving tigher distance estimates.

• The best coefficients provide a high quality reconstruc-
tion of the indexed sequences.

• The knowledge of the remaining energy significantly
tightens the distance estimation.

• Finally, the calculation of upper bounds, reduces the
number of candidate sequences that need to be exam-
ined.
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Figure 22: Fraction of database objects examined
for three compression factors. BestMinError in-
spects the least number of objects, even though
fewer coefficients are used.

7.4 Index Performance
In our final experiment, we measure the CPU time re-

quired by the Linear Scan and our index structure to return
the 1-Nearest-Neighbor to 50 queries (not already found in
the database).

For our test datasets, due to the high compression, the
index size and the compressed features could easily fit in
memory, therefore we provide two running times for our in-
dex; the first one is with all the compressed features in mem-
ory and the second one is with the compressed sequences in
secondary storage.

In fig. 23 we report the running time for the linear scan
which uses the uncompressed sequences, in comparison with
the index running time for various compression factors and
database sizes. Both approaches were optimized to perform
an early termination of the Euclidean distance, when the
running sum exceeded the best-so-far match. We can ob-
serve that when the compressed features are retrieved from
the disk the index is approximately 20-25 times faster than
the sequential scan. In the case where the compressed se-
quences fit in memory the speedup exceeds the 120 times.
Notice that this running time, includes the random I/O
to read the uncompressed sequences from the disk. The
best performance for the memory resident index in observed
when more coefficients are utilized. However, for the exter-
nal memory index the highest compression factors achieve
the best performance. This is attributed to the reduced I/O
costs for this case, and it is also a significant indicator that
a few number of the best coefficients can capture accurately
the sequence shape. The result is very promising since it
demonstrates that we can achieve exceptional performance
with compact external memory indices.

2*(8)+1
2*(16)+1

2*(32)+1
32768

16384

8192

0

500

1000

1500

2000

2500

Doubles p
er s

equence

Database Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Linear Scan
Index on Disk
Index in Memory

Figure 23: Fraction of running time required by our
index structure to return the 1NN, compared to
Linear Scan. The observed speedup is at least 20
times (for disk based index), exceeding 2 orders of
magnitude when the compressed features reside in
memory.

7.5 The S2 Similarity Tool
We conclude this section with a brief description of a tool

that we developed which incorporates many of the features
discussed in this paper.

Our tool is called S2 which stands for Similarity Tool. The
program is implemented in C# and it interacts with a re-
mote SQL database server to retrieve the actual sequences,
while the compressed features are stored locally for faster ac-
cess. Realtime response rates are observed for the subset of
the top 80000+ sequences, whose compressed representation
the program utilizes. The user can pose a search keyword
and similar sequences from the MSN query database are re-
trieved. A snapshot of the main window form is presented
in fig. 24. The program offers three major functionalities:

• Identification of important periods

• Similarity search



• Burst Detection & Query-by-Burst

The user can examine at any time the quality of the time-
series approximation, based on the best-k coefficients. Ad-
ditionally, a presentation of the discovered bursts for the
sequence is also possible. It is at the user’s discretion to use
all or some of the best-k periods for similarity search, there-
fore effectively concentrating on just the periods of interest.
Similar functionality is provided for burst search.

Figure 24: Snapshot of the S2 tool and demonstra-
tion of ’query-by-burst’

8. CONCLUSIONS AND FUTURE WORK
In this work we proposed methods for improving the tight-

ness of lower and upper bounds on Euclidean distance, by
carefully selecting the information retained in the compressed
representation of sequences. In addition, the selected infor-
mation allows us to utilize a full query rather than a com-
pressed representation of the query which further improves
the bounds and significantly improves the index pruning per-
formance. Moreover, we have presented simple and effective
ways for identifying periodicities and bursts. We applied
these methods on real datasets from the MSN query logs
and demonstrated with extensive examples the applicability
of our contributions.

In the approach described here, we choose a fixed number
of coefficients for each object. A natural extension of this
approach is to allow for a variable number of coefficients.
For instance, one possibility in the case of Fourier coeffi-
cients is to add the best coefficients until the compressed
representation contains k% of the energy in the signal (or,
equivalently, the error is below some threshold). This type
of compressed representation is easily indexed using our cus-
tomized VP-tree index.

In addition, we feel that this approach can be fruitfully
applied for other types of similarity queries. In particular,
we believe that a similar approach could prove useful in the
computation of linear-cost lower and upper bounds for ex-
pensive distance measures like dynamic time warping [9].
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