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Abstract. We introduce a new combinatorial optimization problem in
this paper, called the Minimum Common Integer Partition (MCIP) prob-
lem, which was inspired by computational biology applications including
ortholog assignment and DNA fingerprint assembly. A partition of a pos-
itive integer n is a multiset of positive integers that add up to exactly
n, and an integer partition of a multiset S of integers is defined as the
multiset union of partitions of integers in S. Given a sequence of mul-
tisets S1, · · · , Sk of integers, where k ≥ 2, we say that a multiset is a
common integer partition if it is an integer partition of every multiset
Si, 1 ≤ i ≤ k. The MCIP problem is thus defined as to find a common
integer partition of S1, · · · , Sk with the minimum cardinality. It is easy
to see that the MCIP problem is NP-hard since it generalizes the well-
known Set Partition problem. We can in fact show that it is APX-hard.
We will also present a 5

4
-approximation algorithm for the MCIP problem

when k = 2, and a 3k(k−1)
3k−2

-approximation algorithm for k ≥ 3.

1 Introduction

Computational molecular biology has emerged as one of the most exciting in-
terdisciplinary fields in the past two decades, in part because various biological
applications have spawned a large number of interesting combinatorial problems
such as multiple sequence alignment [12], sorting by reversals [20], and recently
the minimum common partition problem [10]. These problems have attracted
considerable attention from computer scientists who took the challenge to de-
sign efficient and effective algorithms for solving them [5, 14, 13]. In this paper,
we introduce a new combinatorial optimization problem, called the Minimum
Common Integer Partition problem (MCIP), which was inspired by our recent
work on ortholog assignment and DNA fingerprint assembly.

By a partition of a positive integer n we mean a multiset {n1, n2, · · · , nr} of
positive integers that add up to exactly n, i.e.

∑r
i=1 ni = n, where ni is called a

part of n [2, 4]. Given a multiset S = {x1, x2, · · · , xm} of integers with a partition
for each integer xi, 1 ≤ i ≤ m, we can define an integer partition of S as the
multiset union of these partitions, that is

⊎m
i=1 P (xi). By definition, S is an
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integer partition of itself. A multiset is said to be a common integer partition of
a sequence of multisets S1, S2, . . . , Sk(k ≥ 2) if it is an integer partition of every
multiset Si, 1 ≤ i ≤ k. The minimum common integer partition problem is thus
defined as follows: given a sequence of multisets S1, S2, · · · , Sk of integers, find a
common integer partition of them with the minimum cardinality. We denote the
minimum common integer partition by MCIP(S1, S2, · · · , Sk) (or simply MCIP
when the input multisets are clear from the context). Note that, now MCIP
denotes both the MCIP problem and also its solution on a particular instance,
but this overloading is a common pratice and should not cause any confusion
given the context. For simplicity, we also denote by MCIP(S1, S2, · · ·, Sk) (or
simply k-MCIP) the restricted version of the MCIP problem when the number
of input multisets is fixed to be k throughout the paper.

For example, the integer 3 has only three partitions, i.e., {3},{2, 1}, and
{1, 1, 1}, while the integer 10 has 190569292 partitions [2]. We can see that the
number of partitions increases quite rapidly with the integer n. For multiset
S = {3, 3, 4}, {2, 2, 3, 3} is an integer partition of S and {1, 1, 2, 2, 4} is another
one. For a pair of multisets S = {3, 3, 4} and T = {2, 2, 6}, both {2, 2, 3, 3}
and {1, 1, 2, 2, 4} are common integer partitions of S and T , while the first one
gives the minimum cardinality, i.e., MCIP(S, T ) = {2, 2, 3, 3}. Note that the
minimum common integer partition is not necessarily unique. So, the notation
MCIP(S1, S2, · · · , Sk) is not really a function, strictly speaking. But we will use
it as a function throughout the paper for simplicity.

The necessary and sufficient condition for a sequence of multisets S1, S2, . . . , Sk

to have a common integer partition is that they have the same summation over
their integer elements. Multisets with this property are called related. Verifying
whether a sequence of multisets of integers are related can be done easily in
linear time, and thus for the rest of the paper we will assume, without loss of
generality, that the input multisets are all related.

Clearly, the MCIP problem is NP-hard since it generalizes the well-known Set
Partition problem [7]. In this paper, we show that the MCIP problem is APX-
hard and hence has no polynomial-time approximation algorithm (PTAS) unless
P = NP. We also present a 5

4 -approximation algorithm for the 2-MCIP using a
heuristic for the Maximum Set Packing problem, and a 3k(k−1)

3k−2 -approximation
algorithm for the general k-MCIP problem, where k ≥ 3.

1.1 Biological Background

Although the MCIP problem is quite a natural extension of the Set Partition
problem, its formulation was mainly motivated by our recent work on ortholog
assignment and DNA fingerprint assembly in computational molecular biology.
The following gives a brief account of the background. Since it contains discus-
sions that involve the knowledge of some biological experiments, the reader who
is not interested in the biological relevance may feel free to skip some (or all) of
the paragraphs in this subsection.

Ortholog assignment. Orthologous genes are typically the evolutionary and
functional counterparts in different species, and therefore the prediction (or as-
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signment) of orthologs is a common task in computational biology. While it is
usually done using sequence homology search [19], we have recently proposed an
alternative and promising approach to assign orthologs via genome rearrange-
ment [9, 10]. This new approach has inspired us to formulate several interesting
combinatorial optimization problems, e.g., Signed Reversal Distance with Du-
plicates (SRDD), Minimum Common String Partition (MCSP), and Maximum
Cycle Decomposition (MCD), which have attracted increasing attention from the
algorithms community [6, 13, 11, 16]. In particular, the MCSP problem, which is
the most related to MCIP, is defined as follows: Given two input strings, parti-
tion them into the same collection of substrings so that the number of resultant
substrings is minimized. For example, the MCSP for {aaabbbccc, bbbaaaccc} is
{aaa, bbb, ccc}. The restricted version of MCSP where the number of symbols
that occur in an input string multiple times (called duplicated symbols; the
other symbols are called singletons) is no more than l in each input string, is
denoted by MCSP-l. It is known that the MCSP-l problem is NP-hard [8], when
l ≥ 1. In other words, even when there is only one symbol with multiple copies in
input strings, we still cannot find the MCSP in polynomial time unless P=NP.

It is easy to transform an instance of MCSP-1 into an instance of 2-MCIP
where each integer represents the size of a block consisting of only the dupli-
cated symbol so that an optimal solution to the 2-MCIP problem would in most
cases give an optimal solution to the MCSP-1 problem with the same cardinal-
ity [8]. Therefore, we hope that the study of MCIP will help the design of good
approximation algorithms for MCSP-1 and MCSP in general.

DNA fingerprint assembly. In the ongoing Oligonucleotide Fingerprinting Ri-
bosomal Genes (OFRG) project [21], we collaborate with microbiologists and
statisticians to provide a high-throughput method for identifying different mi-
crobial organisms. Briefly, the microbiologists build an rDNA clone library af-
ter DNA extraction and Polymerase Chain Reaction (PCR) amplification. The
rDNA clones are assigned fingerprints (binary strings where 0 indicate non-
binding between a clone and a probe, and 1 otherwise) through a series of hy-
bridization experiments, each using a single 10-nucleotide DNA probe. These
10-nucleotide DNA probes comprise a probe set and the size of the probe set
determines the length of a fingerprint. Then, clones are identified by clustering
their fingerprints with those of known sequences. By mapping sequence data
to hybridization patterns, clones can be identified (or at least differentiated).
Compared with direct sequencing, the method saves significant cost without
sacrificing too much discriminating ability.

Although OFRG is a cost-effective approach, we are trying to scale it up in
order to process a large number of samples from applications such as identify-
ing microorganisms involved in the development of the mucosal and systemic
immune system. One possible way of enhancing OFRG is inspired by new (but
proven) technologies such as microbead clone libraries and multiplex flow cytom-
etry. By producing clone libraries on microbeads, we are able to simultaneously
hybridize a set of probes to thousands of clones in seconds, which is a significant
improvement over the current array platform. However, we will still need multi-
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ple hybridizations, each using a different probe (sub)set, as the size of the desired
probe set in OFRG exceeds the maximum discriminating size of the cytometry
technology. Thus we obtain a partial fingerprint from each run of hybridization
because only a subset of the probes are used in each hybridization.

The DNA fingerprint assembly problem aims at inferring a complete finger-
print (with respect to the overall probe set) for each clone from partial fin-
gerprints by minimizing the total number of distinct complete fingerprints. We
assume that all the probe subsets share a small number of common probes which
are called the linking probes. That is, these linking probes will be used for each
run of hybridization. A complete fingerprint can thus be obtained from partial
fingerprints that share the same bits on the linking probes. More specifically,
after each run of the hybridization, we assign a weight to each distinct par-
tial fingerprint as the number of clones that produced this partial fingerprint
in the hybridization. Then we divide all partial fingerprints into groups based
on their bits on the positions of linking probes. The partial fingerprints in a
group are compatible with each other and may correspond to the same complete
fingerprint. For each group, the fingerprint assembly problem can be viewed as
MCIP(S1, S2, · · · , Sk), with k being the number of the probe subsets (i.e. the
number of hybridizations) and Si containing the weight of each partial fingerprint
in this particular group from the ith hybridization. Hence, complete fingerprints
for each group can be obtained by combining their respective partial fingerprints
via the minimum common integer partition of the weights. Such a solution would
represent the minimum number of distinct complete fingerprints (or clones) that
have produced the group of partial fingerprints.

2 Some Basic Facts

Throughout the paper, we assume that the multisets given as input to MCIP
are related as mentioned before. Due to page constraint, we omit the proofs of
all the lemmas and Theorem 4 (See [22] for the details of the proofs).

We denote the size of the minimum common integer partition by |MCIP (S1,
S2, · · · , Sk)| (or simply |k-MCIP | if the input multisets are clear from the con-
text). Because every integer in any input multiset will be partitioned into one or
more integers in the minimum common integer partition, the following lemma
gives a trivial, but useful lower bound.

Lemma 1. |MCIP (S1, S2, · · · , Sk)| ≥ max(|S1|, |S2|, · · · , |Sk|), where | · | is the
size of a multiset.

In the case of 2-MCIP, we use 〈S, T 〉 to denote the two input multisets, where
S = {x1, x2, · · · , xm} and T = {y1, y2, · · · , yn} such that

∑m
i=1 xi =

∑n
i=1 yi. A

greedy algorithm that constructs a common integer partition of 〈S, T 〉 is to
iteratively add the smaller one of two integers randomly selected from the two
input multisets. More precisely, the algorithm can be described in pseudo-code
as in Figure 1, and runs in time linear in n. The following lemma gives an upper
bound for 2-MCIP, which is very useful in the subsequent discussion.



5

Algorithm 2-Approx-MCIP(S, T )

input Two related multisets S and T
output A common integer partition CIP

of S and T
begin

CIP := ∅;
while S 6= ∅ do

arbitrarily pick xi ∈ S and yj ∈ T ;

S := S \ {xi}; T := T \ {yj};
z := min(xi, yj); CIP := CIP

⊎{z};
if xi 6= z S := S

⊎{xi − z};
if yi 6= z T := T

⊎{yi − z};
end.

Fig. 1. A 2-approximation algorithm for 2-
MCIP.

Algorithm 5
4
-Approx-MCIP(S, T )

input Two related multisets S and T
output A common integer partition CIP

of S and T

begin

remove common integer(S,T );

approximate set packing(S,T );

CIP := CIP (S1, T1)
⊎

CIP (S2, T2);

CIP := CIP
⊎

2-APPROX-MCIP(S3, T3);

return CIP ;

end.

Fig. 2. A 5
4
-approximation algorithm for 2-

MCIP.

Lemma 2. |MCIP (S, T )| ≤ |S|+ |T | − 1.

As its name suggests, 2-APPROX-MCIP(S,T ) is a 2-approximation algo-
rithm for the problem of 2-MCIP, which is implied by Lemma 1 and Lemma 2.

Lemma 3. The algorithm 2-APPROX-MCIP(S,T ) achieves an approxima-
tion ratio of 2.

Given a common integer partition CIP (S, T ) of 〈S, T 〉, we say that xi is
mapped to yj if there exists an element in CIP (S, T ) such that it is a part of xi

as well as a part of yj . Notice that an integer in S (or T ) can be mapped to two or
more integers in T (or S). Two integers a1 and ah in 〈S, T 〉 (i.e., a1, ah ∈ S

⊎
T )

are said to be connected if there exist a sequence of integers a2, · · ·, ah−1 in 〈S, T 〉
such that ai is mapped to ai+1, for each i ∈ [1, h− 1]. Thus, all the integers that
are connected to each other in S and T will constitute a connected component
(or simply component) of 〈S, T 〉. We say that these connected components are
induced by the given common integer partition CIP (S, T ).

Lemma 4. Suppose that CIP (S, T ) denotes a common integer partition of S
and T . Then

1. every connected component 〈S1, T1〉 induced by CIP (S, T ) is a pair of related
multisets;

2. for every connected component 〈S1, T1〉, all the integers in CIP (S, T ) that
are parts of integers in S1 or T1 constitute a common integer partition
CIP (S1, T1) of S1 and T1 such that |CIP (S1, T1)| ≥ |S1|+ |T1| − 1.

2.1 The Maximum Related Multiset Partition

In this subsection, we define a new combinatorial optimization problem, maxi-
mum related multiset partition (MRMP), to assist solving the MCIP problem.
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S1 and T1 are said to be a pair of related submultisets of two related multisets
S and T if S1 is a (nonempty) submultiset of S, T1 is a (nonempty) submultiset
of T , and they are related. We write 〈S1, T1〉 ⊆ 〈S, T 〉 to denote the related
submultisets. Obviously,〈S, T 〉 ⊆ 〈S, T 〉. Furthermore, S and T are said to be
basic if they have one and only one pair of related submultisets, namely 〈S, T 〉.
For example, consider S = {3, 3, 4} and T = {2, 2, 6}. They have three pairs
of related submultisets: 〈{3, 3}, {6}〉, 〈{4}, {2, 2}〉, and 〈S, T 〉. Therefore, S and
T are not a pair of basic related multisets. An example of two basic related
multisets is 〈{1, 4}, {2, 3}〉.

A multiset partition (or simply partition) of a multiset S is a sequence of
disjoint submultisets S1, S2, · · · , Sl of S whose union is S, i.e. S =

⊎l
i=1 Si.

By definition, S is a multiset partition of itself. It is important to remem-
ber that multiset partition and the integer partition are two different concepts
in this paper. Given two multisets S and T of integers, a sequence of mul-
tiset pairs 〈S1, T1〉, 〈S2, T2〉, · · · , 〈Sl, Tl〉 is called a related multiset partition if
{S1, S2, · · · , Sl} is a multiset partition of S, {T1, T2, · · · , Tl} is a multiset par-
tition of T , and, moreover, for each i ∈ [1, l], Si and Ti are a pair of related
multisets. The maximum related multiset partition problem is then defined as to
find a related multiset partition of two given multisets S and T , maximizing the
number of related multiset pairs in the partition. We denote by MRMP (S, T )
(or 2-MRMP ) the maximum related multiset partition of S and T , and by
|MRMP (S, T )| (or |2-MRMP |) the size of the partition, i.e., the number of
related multiset pairs in the partition.

Lemma 5. Given a common integer partition CIP (S, T ), we can transform it
into a related multiset partition of S and T , denoted as RMP (S, T ), such that
|RMP (S, T )| ≥ |S|+ |T | − |CIP (S, T )|.

The following lemma establishes the relationship between MCIP and MRMP,
showing their (complementary) equivalence.

Lemma 6. If S and T are related multisets, then |MCIP (S, T )|+|MRMP (S, T )|
= |S|+ |T |.

Since a pair of basic related multisets S and T cannot be partitioned fur-
ther into related submultisets, i.e., |MRMP (S, T )| = 1, the following lemma is
trivially implied by Lemma 6.

Lemma 7. If S and T are a pair of basic related multisets, then |MCIP (S, T )| =
|S|+ |T | − 1.

The following lemmas will be crucial to the approximation algorithms. We
define the size of a pair of related multisets S and T as the sum of the size of S
and the size of T , i.e., |〈S, T 〉| = |S|+ |T |.

Lemma 8. If the minimum size of any related submultiset of S and T is c, then
|MCIP (S, T )| ≥ c−1

c (|S|+ |T |).
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Lemma 9. Given two related multisets, S = {x1, x2, · · · , xm} and T = {y1, y2,
· · · , yn}. If xi and yj are identical, then {xi}

⊎
MCIP (S\{xi}, T\{yj}) is a min-

imum common integer partition of S and T , i.e., |MCIP (S, T )| = |MCIP (S \
{xi}, T \ {yj})|+ 1.

Unfortunately, the result in Lemma 9 cannot be extended to the case of k mul-
tisets when k ≥ 3. An interesting counterexample is {6, 5, 1, 4, 2}, {6, 5, 1, 3, 3},
{6, 4, 2, 3, 3}. Their minimum common integer partition is of size 6, but any
common integer partition including 6 as an element is of size at least 7. In the
following, we will use a procedure remove common integer(S1, S2, · · · , Sk) to
remove all common integer elements existing in every multiset of {S1, S2, · · · , Sk}
(and add them into the solution). The optimality of this operation is guaranteed
only when k = 2, as shown in Lemma 9.

3 Hardness of Approximation

It is easy to see that MCIP is NP-hard because there is a straightforward re-
duction from the Set Partition problem. This section is devoted to proving that
MCIP is APX-hard.

In the sequel, we prove the APX-completeness of 2-MCIP by an L-reduction
from the Maximum Bounded 3-Dimensional Matching problem (denoted as MAX
3DM-3). The MAX 3DM-3 problem is defined as follows: Given a set D ⊆
X × Y × Z, where X, Y and Z are disjoint sets and moreover, each element in
X, Y and Z occurs in at least one and at most three triples in D [17], the goal
is to find a matching M ⊆ D for D of the maximum cardinality, i.e., a largest
set M ⊆ D such that no two elements in M agree in any coordinate. In this
problem, without loss of generality, we can assume that n = |X| ≤ |Y | ≤ |Z|.
Since each element in X occurs at least once and at most three times in D, the
number of triples is at least n and at most 3n, i.e., n ≤ |D| ≤ 3n. It also implies
that |Y | ≤ 3n and |Z| ≤ 3n. Further observe that each triple can intersect at
most six other triples, which implies that the maximum matching contains at
least |D|/7 triples. Let |MAX 3DM-3| denote the size of maximum matching
of |D|. It is easy to see that dn

7 e ≤ |MAX 3DM-3| ≤ n.
Let X = {x1, x2, · · · , x|X|}, Y = {y1, y2, · · · , y|Y |}, Z = {z1, z2, · · · , z|Z|},

and D = {d1, d2, · · · , d|D|} where di = (xiX , yiY , ziZ ) for each i ∈ [1, |D|] and
iX (iY or iZ , respectively) is the corresponding index of the integer xiX (yiY

or ziZ , respectively) in X (Y or Z, respectively). We can define a function f to
construct an instance of 2-MCIP as follows:

• A multiset X̃ = {x̃i|x̃i = 4i,∀xi ∈ X};
• A multiset Ỹ = {ỹi|ỹi = 4|X|+i,∀yi ∈ Y };
• A multiset Z̃ = {z̃i|z̃i = 4|X|+|Y |+i,∀zi ∈ Z};
• A multiset D̃ = {d̃i|d̃i = x̃iX + ỹiY + z̃iZ ,∀di ∈ D};
• An integer e =

∑|D|
i=1 d̃i −

∑|X|
i=1 x̃i −

∑|Y |
i=1 ỹi −

∑|Z|
i=1 z̃i.

• Two multisets S = D̃ and T = X̃ ∪ Ỹ ∪ Z̃ ∪ {e}.
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Since each element in X, Y and Z is assumed to occur at least once in D while
some elements occur more than once, it always holds that e > 0. Obviously,∑

S =
∑

T . Therefore, 〈S, T 〉 is an instance of 2-MCIP that we can obtain in
time linear in n.

Let |2-MCIP | denote the size of the minimum common integer partition of
〈S, T 〉. Then, we have the following lemma.

Lemma 10. For any instance of MAX 3DM-3, |2-MCIP | ≤ 70·|MAX 3DM-3|.
Given a common integer partition 2-CIP of 〈S, T 〉, we define a function g to

construct a subset (denoted as 3DM-3) of D by including all the triples di =
(xiX , yiY , ziZ ) (1 ≤ i ≤ |D|) whose corresponding integers d̃i = x̃iX + ỹiY + z̃iZ

are not connected to the integer e in the common integer partition 2-CIP .

Lemma 11. For any instance D of MAX 3DM-3, the subset 3DM-3 constructed
by the function g is a matching of D.

Let |2-MRMP | be the size of the maximum related multiset partition of
S and T . Let |2-RMP | be the size of a related multiset partition of S and T ,
induced by a given common partition 2-CIP.

Lemma 12. |2-MRMP | = |MAX 3DM-3|+ 1.

Lemma 13. |MAX 3DM-3| − |3DM-3| ≤ |2-CIP | − |2-MCIP |.
Lemma 14. MAX 3DM-3 ≤ L 2-MCIP.

Theorem 1. The k-MCIP problem is APX-complete, for any k ≥ 2.

Proof. Since the MAX 3DM-3 problem is APX-complete [17] and MAX
3DM-3 ≤ L 2-MCIP by Lemma 14, 2-MCIP is APX-hard. In addition, by
Lemma 3, there exists a polynomial-time 2-approximation algorithm for 2-MCIP,
which implies that 2-MCIP is APX-complete. In Section 5, we will present a
k-approximation algorithm for k-MCIP, which implies that k-MCIP is APX-
complete, for any k ≥ 2. ut

4 Approximation of 2-MCIP via Maximum Set Packing

In this section, we will give a 5
4 -approximation algorithm for the 2-MCIP problem

by considering basic related submultisets of sizes three and four between S and
T . As mentioned earlier, we assume that there are no common integer elements
between the two input multisets S and T , without loss of generality.

We can construct an instance of the Maximum Set Packing problem [1],
in which the collection C consists of all the basic related submultisets of sizes
three and four between S and T . Since the cardinality of each multiset in C is
bounded from the above by a constant, it is actually an instance of the Maximum
k-Set Packing problem where k = 4. Hurkens and Schrijver [15] show that the
Maximum k-Set Packing problem is approximable within ratio k/2 + ε for any
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ε > 0. For the weighted version of the Maximum k-Set Packing problem, where
each set is given a non-negative weight, Arkin and Hassin [3] show that it is
approximable within ratio k − 1 + ε for any ε > 0.

In the following, we consider a special weighted Maximum k-Set Packing
problem on C, where the weight for each basic related multiset of size three
is 2 and the weight for a multiset of size four is 1, and the goal is to find a
collection of disjoint multisets of maximum total weight. Call any collection of
pairwise disjoint multisets a packing. We design a heuristic algorithm, which
is implemented in the procedure approximate set packing(S,T ), to find a
packing as follows: first find a maximal set packing, and then recursively replace
a multiset of size four in the packing by a multiset of size three, or replace a
multiset of size three by two multisets of size three, or add some multiset into
the packing so that the resultant collection is still a packing (but with one more
multiset of size three after a replacement or with one more multiset after an
addition), until no such replacement or addition could be made further.

The above heuristic algorithm can be made to run in O(|U | · |C|2) time. Due
to the space limitation, the running time analysis is omitted here, which can be
found in [22] .

Let q3 and q4 denote the numbers of basic related multisets of sizes three
and four in the packing found by our heuristic algorithm, and q∗3 and q∗4 the
numbers of basic related multisets of sizes three and four in an optimal weighted
set packing, respectively. It is obvious that 2q3 + q4 ≤ 2q∗3 + q∗4 . Moreover, we
can obtain the following relationship. 4

Lemma 15. 2q∗3 + q∗4 ≤ 4(q3 + q4).

Let q′3 and q′4 be the numbers of basic related submultisets of sizes three
and four in the related multiset partition induced by a given minimum common
partition MCIP(S, T ). It is obvious that 2q′3 + q′4 ≤ 2q∗3 + q∗4 . The following is a
tighter lower bound for 2-MCIP.

Lemma 16. |MCIP (S, T )| ≥ 4
5 (m + n) − 1

5 (2q∗3 + q∗4), where m = |S| and
n = |T |.

The following lemma gives a tighter upper bound for 2-MCIP.

Lemma 17. |MCIP (S, T )| ≤ m + n− q3 − q4 − 1.

As mentioned earlier, we run the procedure approximate set packing(S,T )
to find the three disjoint submultisets 〈S1, T1〉, 〈S2, T2〉 and 〈S3, T3〉. A 5

4 - ap-
proximation algorithm for 2-MCIP can then be obtained, as illustrated in Fig-
ure 2. The algorithm runs in time O((m + n)9), which is dominated by the
running time of the procedure approximate set packing(S,T ), as there are
m + n elements in the universe and the size of the collection C could reach
4 The (k/2 + ε)-approximation algorithm given by Hurkens and Schrijver [15] can

also find a packing of C satisfying the inequality in Lemma 15, but only in quasi-
polynomial time.
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Algorithm k-Approx-MCIP(S1, · · ·, Sk)

input Related multisets S1, · · ·, Sk

output A common integer partition CIP
of S1, · · ·, Sk

begin

CIP := 2-Approx-MCIP(S1, S2);

for i = 3 to k do
CIP := 2-Approx-MCIP(CIP, Si);

return CIP ;
end.

Fig. 3. A k-approximation algorithm for k-
MCIP.

Algorithm
3k(k−1)
3k−2

-Approx-MCIP(S1, · · ·, Sk)

input Related multisets S1, · · ·, Sk

output A common integer partition CIP
of S1, · · ·, Sk

begin

remove common integer(S1, · · ·, Sk);

CIP := k-Approx-MCIP(S1, · · · , Sk);

return CIP ;
end.

Fig. 4. A 3k(k−1)
3k−2

-approximation algorithm
for k-MCIP.

Θ((m + n)4) in the worst case. We believe that the running time can be fur-
ther reduced by a more careful implementation and analysis of the procedure
approximate set packing(S,T ).

Theorem 2. The algorithm 5
4 -APPROX-MCIP is a 5

4 -approximation algorithm
for 2-MCIP.

Proof. By Lemmas 16 and 17, the approximation ratio α given by algorithm
5
4 -APPROX-MCIP is

α ≤ m + n− q3 − q4 − 1
4
5 (m + n)− 1

5 (2q∗3 + q∗4)
=

5
4
· m + n− q3 − q4 − 1
m + n− 1

4 (2q∗3 + q∗4)

It suffices to show that m + n − q3 − q4 − 1 ≤ m + n − 1
4 (2q∗3 + q∗4), which is

equivalent to showing 2q∗3 + q∗4 ≤ 4(q3 + q4 + 1). By lemma 15, we know that
2q∗3 + q∗4 ≤ 4(q3 + q4). Therefore, α ≤ 5

4 . ut

5 Approximation of k-MCIP

In this section, we will discuss how to approximate the general k-MCIP (k ≥ 3)
problem.

Using the algorithm 2-Approx-MCIP(S,T ) in the previous section, we give
an approximation algorithm to solve the k-MCIP (k ≥ 3) problem, as described
in Figure 3. First, we give an upper bound on the performance of this algorithm.

Lemma 18. |MCIP (S1, S2, · · · , Sk)| ≤ ∑k
i=1 |Si| − k + 1.

Theorem 3. The algorithm k-Approx-MCIP is a k-approximation algorithm
for the k-MCIP (k ≥ 2) problem.

Proof. By Lemma 1 and Lemma 18, the size of the common integer partition
CIP returned from k-Approx-MCIP(S1, S2,· · ·, Sk) is such that max{|S1|, |S2|,
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· · · , |Sk|} ≤ |MCIP (S1, S2, · · · , Sk)| ≤ |CIP (S1, S2, · · · , Sk)| ≤ ∑k
i=1 |Si|−k+1,

from which the theorem follows. ut
As described in Figure 4, the algorithm k-Approx-MCIP can be slightly im-

proved by employing the procedure remove common integer(S1, S2, · · · , Sk).
To show that this improved algorithm achieves an approximation ratio less than
k, we need the following lemma.

Lemma 19. If there is no integer element common to all the multisets in {S1, S2,

· · · , Sk}, then it holds that |MCIP (S1, S2, · · · , Sk)| ≥ 3k−2
3k(k−1)

∑k
i=1 |Si|.

Theorem 4. The algorithm 3k(k−1)
3k−2 -Approx-MCIP is a 3k(k−1)

3k−2 -approximation
algorithm for the k-MCIP (k ≥ 2) problem.

Clearly, the algorithm 3k(k−1)
3k−2 -Approx-MCIP(S1, · · ·, Sk) runs in O(

∑
i |Si|·

log(
∑

i |Si|)) time. Let us compare Theorem 4 with Theorem 3. Clearly, 3k(k−1)
3k−2

is always smaller than k, for any k ≥ 2. For example, when k = 2, the above
algorithm gives approximation ratio 1.5, and when k = 3, its approximation ra-
tio is 18

7 , which is much better than the ratio 3 in Theorem 3. However, when k

becomes large, 3k(k−1)
3k−2 is only slightly smaller than k, since 3k(k−1)

3k−2 = Θ(k). It is
an interesting open question whether k-MCIP has an approximation algorithm
with a ratio that is asymptotically better than k.

6 Concluding Remarks

It is interesting to observe that although 2-MCIP is in some sense similar to other
integer partition/summation problems such as Knapsack and Bin Packing, it is
much more difficult to approximate. For example, Knapsack and Bin Packing all
have an FPTAS (fully polynomial-time approximation scheme) or asymptotic
PTAS, but Theorem 1 implies that it is unlikely for 2-MCIP to have a PTAS.
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Appendix

Proof of Lemma 2. After each iteration of the algorithm 2-APPROX-
MCIP(S,T ), the total size of S and T shall decrease by one or two while the
multiset CIP expands by one integer. In the last iteration, the two integers
remaining in S and T must be equal, and thus the total size of S and T shall
decrease by exactly two. Therefore, the common integer partition returned from
the algorithm contains no more than |S|+ |T | − 1 integers. ut
Proof of Lemma 4. (1) Based on the common integer partition CIP (S, T ),
each part of an integer xi in S1 corresponds to a distinct part of exactly one
integer yj in T in a one-to-one fashion. In this case, xi and yj are mapped to
each other, and by the definition of connected components, yj will be included in
T1, implying that

∑
x∈S1

x ≤ ∑
y∈T1

y. Similarly, we have
∑

x∈S1
x ≥ ∑

y∈T1
y.

Therefore, S1 and T1 are two related multisets.
(2) Since the multiset under consideration (i.e. CIP (S1, T1)) consists of all

integers from CIP (S, T ) that are parts of integers in S1 or T1 and nothing else,
it is clearly a common integer partition of S1 and T1.

To see that |CIP (S1, T1)| ≥ |S1|+ |T1|−1, we construct an undirected graph
based on the integers in S1, T1 and CIP (S1, T1): for each integer in S1 (or T1),
a vertex is created; for each integer in CIP (S1, T1) which is a part of xi as well
as a part of yj , for some xi and yj , an edge is created between the vertices for
xi and yj . We denote by |V | the number of vertices in the graph and by |E| the
number of edges. Observe that there is a one-to-one correspondence between the
vertices and the integers in S1

⊎
T1, and hence |V | = |S1|+ |T1|. Further observe

that there is a one-to-one correspondence between the edges and the integers
in CIP (S1, T1), and thus |E| = |CIP (S1, T1)|. We can see that the graph is
connected and may have multiple edges between a pair of vertices, implying
that |E| ≥ |V | − 1. Thus |CIP (S1, T1)| ≥ |S1|+ |T1| − 1 holds. ut
Proof of Lemma 5. Based on the given common integer partition CIP (S, T ),
〈S, T 〉 can be decomposed into l connected components 〈S1, T1〉, 〈S2, T2〉, · · ·,
〈Sl, Tl〉. By Lemma 4, each connected component is a pair of related multisets
and disjoint with any other component. Therefore, all the l connected compo-
nents naturally give a related multiset partition (denoted as RMP (S, T )) of
〈S, T 〉, such that |RMP (S, T )| = l. Let CIP (Si, Ti) denote the common integer
partition of 〈Si, Ti〉 induced from CIP (S, T ). We can see that the union of all
CIP (Si, Ti) will be the common integer partition CIP (S, T ), i.e., CIP (S, T ) =⊎l

i=1 CIP (Si, Ti). Since each 〈Si, Ti〉 is a connected component, by Theorem 4,
|CIP (Si, Ti)| ≥ |Si|+ |Ti| − 1 holds for each i ∈ [1, l]. Therefore, |CIP (S, T )| =∑l

i=1 |CIP (Si, Ti)| ≥
∑l

i=1(|Si|+ |Ti| − 1)| = |S|+ |T | − |RMP (S, T )|. ut
Proof of Lemma 6. Assume that 〈S1, T1〉, 〈S2, T2〉, · · ·, 〈Sl, Tl〉 is a maxi-
mum related multiset partition of S and T with l = |MRMP (S, T )|. For each
i ∈ [1, l], 〈Si, Ti〉 is a pair of basic related multisets, and by Lemma 2, the
minimum common integer partition MCIP(Si, Ti) is of size less than or equal
to |Si| + |Ti| − 1, i.e., |MCIP (Si, Ti)| ≤ |Si| + |Ti| − 1. We can also see that



14

the union of all MCIP(Si, Ti) forms a common integer partition CIP (S, T ) of
S and T , i.e., CIP (S, T ) =

⊎l
i=1 MCIP (Si, Ti), and its size is |CIP (S, T )| =∑l

i=1 |MCIP (Si, Ti)| ≤
∑l

i=1(|Si| + |Ti| − 1)| = |S| + |T | − |MRMP (S, T )|.
Therefore, we have |MCIP (S, T )| ≤ |CIP (S, T )| ≤ |S|+ |T | − |MRMP (S, T )|.

By Lemma 5, given a minimum common integer partition MCIP(S, T ), we
can transform it into a related multiset partition RMP (S, T ) s.t. |RMP (S, T )|
≥ |S|+ |T | − |MCIP (S, T )|. Because |MRMP (S, T )| ≥ |RMP (S, T )|, we have
|MCIP (S, T )| ≥ |S|+ |T | − |MRMP (S, T )|. ut
Proof of Lemma 8. Assume that {〈S1, T1〉, 〈S2, T2〉, · · · , 〈Sl, Tl〉} are the ba-
sic related multisets induced by the minimum common integer partition MCIP(S, T ),
such that |MCIP (S, T )| = ∑l

i=1(|Si|+ |Ti|−1). Since |〈Si, Ti〉| = |Si|+ |Ti| ≥ c

for each i ∈ [1, l], |MCIP (S, T )| =
∑

i(|Si| + |Ti| − 1) =
∑

i
|Si|+|Ti|−1
|Si|+|Ti| (|Si| +

|Ti|) ≥
∑

i(1− 1
c )(|Si|+ |Ti|) = c−1

c (|S|+ |T |). ut
Proof of Lemma 9. Assume that MCIP(S, T ) is a minimum common in-
teger partition of S and T . Let MRMP (S, T ) denote the maximum related
multiset partition induced by MCIP(S, T ). If xi and yj are in the same related
submultiset 〈S1, T1〉 of MRMP (S, T ) such that 〈S1, T1〉 6= 〈{xi}, {yj}〉, then we
can further decompose 〈S1, T1〉 into two related submultisets 〈{xi}, {yj}〉 and
〈S1 \ {xi}, T1 \ {yj}〉, which contradicts the definition of the maximum related
multiset partition. If xi and yj are in two different related submultiset 〈S1, T1〉
and 〈S2, T2〉 of MRMP (S, T ), respectively, then we can obtain a new maximum
related multiset partition by replacing 〈S1, T1〉 and 〈S2, T2〉 with 〈{xi}, {yj}〉 and
〈S1

⊎
S2\{xi}, T1

⊎
T2\{yj}〉. Moreover, by Lemma 6, the new maximum related

multiset partition gives another minimum common integer partition in which xi

is mapped to yj , implying that |MCIP (S, T )| = |MCIP (S \{xi}, T \{yj})|+1.
ut
Proof of Lemma 11. Let S1 = {d̃ε1 , · · · , d̃εk

} and T1 = {x̃χ1 , · · · , x̃χl
, ỹγ1 ,

· · · , ỹγm
, z̃ζ1 , · · · , z̃ζn

} include all the integers that are not connected to e in
the given common integer partition 2-CIP of S and T . It can be seen that,
3DM-3 = {dε1 , · · · , dεk

}, and 〈S1, T1〉 are a pair of related multisets, i.e.,

k∑

i=1

d̃εi =
l∑

i=1

x̃χi +
m∑

i=1

ỹγi +
n∑

i=1

z̃ζi

By definition, d̃εi
= x̃εX

i
+ ỹεY

i
+ z̃εZ

i
, for each i ∈ [1, k]. Thus,

k∑

i=1

x̃εX
i

+
k∑

i=1

ỹεY
i

+
k∑

i=1

z̃εZ
i

=
l∑

i=1

x̃χi
+

m∑

i=1

ỹγi
+

n∑

i=1

z̃ζi
(1)

In order to prove that 3DM-3 is a matching of D, it is sufficient to show that
the following three pairs of index sets are identical: {εX

1 , · · · , εX
k } = {χ1, · · · , χl},

{εY
1 , · · · , εY

k } = {γ1, · · · , γm} and {εZ
1 , · · · , εZ

k } = {ζ1, · · · , ζn}, since no integer
element has two copies in T1. Also notice that, by definition, no two integer
elements in T are of equal value.
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Let us first assume that x̃χ1(= 4χ1) be the smallest integer in S1

⊎
T1, and

apply mod 4χ1+1 to Equation (1); that is,

Equation (1) mod 4χ1+1

⇒
k∑

i=1

x̃εX
i
≡ x̃χi

mod 4χ1+1

This is because any integer in S1 or T1 rather than x̃χ1 is divisible by 4χ1+1.
On the other hand, the integer x̃χ1 occurs at most three times in the multiset
{x̃εX

i
|1 ≤ i ≤ k}, and the base that we use to define the integers in S and T is

four. Therefore, the above modulo equivalence implies that there is exactly one
integer element of x̃χ1 in S1.

If the smallest integer in S1

⊎
T1 is x̃εX

1
, we can use the same arguments as

above to show that there is exactly one integer element of x̃εX
1

in S1 and also
in T1. Therefore, we can remove the smallest integer from S1 and T1, and then
repeat the above procedure until the three pairs of index sets are shown to be
identical. ut
Proof of Lemma 12. We can see that, each triple di = (xiX , yiY , ziZ )
in a maximum matching naturally leads to a pair of related submultisets, i.e.,
{d̃i} and {x̃iX , ỹiY , z̃iZ}. In addition, there is a pair of related submultisets that
contain the integer e. Therefore, |2-MRMP | ≥ |MAX 3DM-3|+ 1.

In a maximum related multiset partition, there is only one pair of related
submultisets that contain the integer e. In any other pair of related submultisets,
there exists at least one integer d̃i, whose corresponding triple di will be included
in a matching of D. Therefore, |2-MRMP | − 1 ≤ |MAX 3DM-3|. ut
Proof of Lemma 13. We have shown in the proof of the previous lemma
that, given a pair of related submultisets that does not include e, there ex-
ists at least one integer d̃i, whose corresponding triple di will be included in a
matching of D. Therefore, |2-RMP | − 1 ≤ |3DM-3|. By Lemma 12, we have
|MAX 3DM-3| − |3DM-3| ≤ |2-MRMP | − |2-RMP |. On the other hand,
|2-MCIP |+ |2-MRMP | = |X|+ |Y |+ |Z|+ |D|+1 by lemma 6, and |2-CIP |+
|2-RMP | ≥ |X| + |Y | + |Z| + |D| + 1 by Lemma 5. Therefore, |2-MRMP | −
|2-RMP | ≤ |2-CIP | − |2-MCIP |, from which the lemma follows. ut
Proof of Lemma 14. By Lemmas 10 and 13, the quadruple (f, g, 70, 1)
discussed above gives an L-reduction from MAX 3DM-3 to the 2-MCIP prob-
lem [18]. ut
Running time analysis of the heuristic algorithm in section 4. The
above heuristic algorithm can be made to run in O(|U | · |C|2) time, where U
denotes the universe of the elements in Set Packing, i.e., the multiset union of
all multisets in C. In our case, |U | ≤ m+n. To see this running time, first, given
a packing P , we define a mapping fP : U 7→ C ∪ {∅} as follows: for ∀u ∈ U ,
fP (u) = c if there exists a multiset c ∈ P such that u ∈ c, and fP (u) = ∅
otherwise. Second, given a multiset c ∈ C, the multisets in the packing P that
are not disjoint with c can be found in constant time by looking up the mapping
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function fP , because c has only three or four elements. Furthermore, given two
multisets c1 and c2 in C, we can find in constant time a multiset p in P such
that if p is replaced by c1 and c2 then P

′
= P

⊎{c1, c2} \ {p} is still a packing
of C, or report no such a multiset p in P exists. Third, after each replacement
or addition, updating the mapping function for P

′
can also be done with fP in

constant time. Therefore, in our heuristic algorithm, a replacement or addition
at each iteration can be made in |C|2 time as we may enumerate every pair of
multisets in C for a possible replacement or addition. Finally, observe that at
most |U | replacements could be made as the number of multisets of size three in
the found packing increases by one after each replacement; also observe that at
most |U | additions could be made as the number of multisets in a maximal set
packing is at most |U |.

Proof of Lemma 15. Let Q∗i,j , where i ∈ {3, 4} and 1 ≤ j ≤ i, be a collection
of multisets of size i in the optimal set packing that intersect j multisets in
the packing found by our heuristic algorithm, and q∗i,j be the cardinality of
Q∗i,j . Because the packing found by our heuristic is maximal, we can see that
q∗3 =

∑3
j=1 q∗3,j and q∗4 =

∑4
j=1 q∗4,j . Observe that every multiset of size three

(and four) in the packing found by the heuristic intersects at most three (and
four, respectively) multisets in the optimal packing, which implies that

∑3
j=1 j ·

q∗3,j+
∑4

j=1 j ·q∗4,j ≤ 3q3+4q4. Furthermore, no two multisets in Q∗3,1 can intersect
a same multiset in the packing of the heuristic and none of multisets in Q∗3,1

intersect a multiset of size four in the packing of the heuristic either, implying
that q∗3,1 ≤ q3. Therefore, it follows that 2q∗3 + q∗4 = 2

∑3
j=1 q∗3,j +

∑4
j=1 q∗4,j ≤

q∗3,1 + (
∑3

j=1 j · q∗3,j +
∑4

j=1 j · q∗4,j) ≤ 4(q3 + q4). ut

Proof of Lemma 17. Observe that we can partition 〈S, T 〉 into three pairs
of disjoint related submultisets: 〈S1, T1〉, which consists of integer elements in
the q3 basic related submultisets of size three; 〈S2, T2〉, which consists of in-
teger elements in the q4 basic related submultisets of size four; and 〈S3, T3〉,
which includes the remaining elements in 〈S, T 〉, i.e., S = S1

⊎
S2

⊎
S3 and

T = T1

⊎
T2

⊎
T3. Therefore, we have |MCIP (S, T )| ≤ |MCIP (S1, T1)| +

|MCIP (S2, T2)| + |MCIP (S3, T3)| ≤ 2q3 + 3q4 + |MCIP (S3, T3)| Moreover,
by Lemma 2 we have |MCIP (S3, T3)| ≤ m + n − 3q3 − 4q4 − 1 and thus
|MCIP (S, T )| ≤ m + n− q3 − q4 − 1 from which the lemma follows. ut

Proof of Lemma 16. Based on the given minimum common integer parti-
tion MCIP(S, T ), we can partition 〈S, T 〉 into three pairs of disjoint related sub-
multisets: 〈S1, T1〉, which consists of integer elements in the basic related submul-
tisets of size three; 〈S2, T2〉, which consists of integer elements in the basic related
submultisets of size four; and 〈S3, T3〉, which includes the remaining elements in
〈S, T 〉 such that, S = S1

⊎
S2

⊎
S3 and T = T1

⊎
T2

⊎
T3. Therefore, we have

|MCIP (S, T )| = |MCIP (S1, T1)|+ |MCIP (S2, T2)|+ |MCIP (S3, T3)| = 2q′3 +
3q′4 + |MCIP (S3, T3)| Since all the basic related submultisets of 〈S3, T3〉 induced
by MCIP(S, T ) are of size at least five, by Lemma 8, we have |MCIP (S3, T3)| ≥
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4
5 (m + n − 3q′3 − 4q′4) and thus |MCIP (S, T )| ≥ 4

5 (m + n) − 1
5 (2q′3 + q′4) ≥

4
5 (m + n)− 1

5 (2q∗3 + q∗4) from which the lemma follows. ut
Proof of Lemma 18. After the multiset Sj is processed in the algorithm
k-Approx-MCIP(S1, S2,· · ·, Sk), by Lemma 2, the size of the common integer
partition found so far is upper bounded by

∑j
i=1 |Si| − j + 1, which holds until

j increases up to k. ut
Proof of Lemma 19. We can see that, there is always a multiset among S1,
S2,· · ·, Sk such that its size is no less than 1

k

∑k
i=1 |Si|. Without loss of generality,

we assume that this multiset is Sk. In an optimal solution MCIP, with respect
to Sk, we can divide the elements in a multiset Si(1 ≤ i ≤ k − 1) into two
disjoint submultisets: S1

i , which consists of elements that are mapped to exactly
one (identical) integer in Sk; and S2

i , which is the complement submultiset of
S1

i , i.e., S2
i = Si \ S1

i . Accordingly, with respect to any Si, Sk can be divided
into two disjoint multisets: S1

k,i, which consists of elements that are mapped to
an integer in S1

i ; and S2
k,i, which is the complement submultiset of S1

k,i, i.e.,
S2

k,i = Sk \S1
k,i. Obviously, S1

i and S1
k,i are a pair of related multisets, as are S2

i

and S2
k,i.

Notice that, we can always choose a particular multiset Sj , where 1 ≤ j ≤
k− 1, such that 2|Sj |− |S1

j | ≥ 1
k−1

∑k−1
i=1 (2|Si|− |S1

i |). In addition,
∑k−1

i=1 |S1
i | ≤

(k − 2)|Sk| holds because S1, S2, · · · , Sk have no common elements. We have

|MCIP (S1, S2, · · · , Sk)|
≥ 2

3
(|Sk|+ |Sj | − 2|S1

j |) + |S1
j | (By Lemma 8)

≥ 1
3
{2|Sk|+ 1

k − 1

k−1∑

i=1

(2|Si| − |S1
i |)} (2|Sj | − |S1

j | ≥ 1
k−1

∑k−1

i=1
(2|Si| − |S1

i |))

=
1
3
{2|Sk|+ 1

k − 1
(2

k−1∑

i=1

|Si| −
k−1∑

i=1

|S1
i |)}

≥ 1
3
{2|Sk|+ 1

k − 1
(2

k−1∑

i=1

|Si| − (k − 2)|Sk|)} (
∑k−1

i=1
|S1

i | ≤ (k − 2)|Sk|)

=
1
3
{k − 2
k − 1

|Sk|+ 2
k − 1

k∑

i=1

|Si|}

≥ 1
3
{k − 2
k − 1

·
∑k

i=1 |Si|
k

+
2

k − 1

k∑

i=1

|Si|} (|Sk| ≥ 1
k

∑k

1
|Si|)

=
3k − 2

3k(k − 1)

k∑

i=1

|Si| ut

Proof of Theorem 4. We consider lower and upper bounds of |MCIP (S1, S2, · · · , Sk)|.
Let q denote the number of common integers of {S1, S2, · · · , Sk} used in a given
minimum common integer partition MCIP(S1, · · · , Sk), and q∗ the maximum
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number of common integers, which is returned by remove common integer(S1,
S2, · · · , Sk). Obviously, q ≤ q∗. By Lemma 19, we have

|MCIP (S1, S2, · · · , Sk)| ≥ q +
3k − 2

3k(k − 1)

k∑

i=1

(|Si| − q)

On the other hand, it follows from the definition of the algorithm 3k(k−1)
3k−2 -

Approx-MCIP and Lemma 18 that

|MCIP (S1, S2, · · · , Sk)| ≤ q∗ +
k∑

i=1

(|Si| − q∗)

Therefore, the approximation ratio α achieved by the algorithm 3k(k−1)
3k−2 -Approx-

MCIP is

α ≤ q∗ +
∑k

i=1(|Si| − q∗)

q + 3k−2
3k(k−1)

∑k
i=1(|Si| − q)

=
3k(k − 1)
3k − 2

·
∑k

i=1 |Si| − (k − 1)q∗∑k
i=1 |Si| − k

3k−2q

Now we show that (k − 1)q∗ ≥ k
3k−2q. Since q ≤ q∗, it is sufficient to prove that

k − 1 ≥ k
3k−2 , which is obvious to hold for any k ≥ 2. ut


