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Abstract

Robust and accurate cancer classification is critical in
cancer treatment. Gene expression profiling is expected to
enable us to diagnose tumors precisely and systematically.
However, the classification task in this context is very chal-
lenging because of the curse of dimensionality and the small
sample size problem. In this paper, we propose a novel
method to solve these two problems. Our method is able
to map gene expression data into a very low dimensional
space and thus meets the recommended samples to features
per class ratio. As a result, it can be used to classify new
samples robustly with low and trustable (estimated) error
rates. The method is based on linear discriminant anal-
ysis (LDA). However, the conventional LDA requires that
the within-class scatter matrix Sw be nonsingular. Unfor-
tunately, Sw is always singular in the case of cancer classi-
fication due to the small sample size problem. To overcome
this problem, we develop a generalized linear discriminant
analysis (GLDA) that is a general, direct, and complete
solution to optimize Fisher’s criterion. GLDA is mathe-
matically well-founded and coincides with the conventional
LDA when Sw is nonsingular. Different from the conven-
tional LDA, GLDA does not assume the nonsingularity of
Sw, and thus naturally solves the small sample size prob-
lem. To accommodate the high dimensionality of scatter
matrices, a fast algorithm of GLDA is also developed. Our
extensive experiments on seven public cancer datasets show
that the method performs well. Especially on some difficult
instances that have very small samples to genes per class
ratios, our method achieves much higher accuracies than
widely used classification methods such as support vector
machines, random forests, etc.

1 Introduction

Accurate diagnosis of human cancer is essential in can-
cer treatment. Recently, the advances in microarray tech-

nology enable us to simultaneously observe the expres-
sion levels of many thousands of genes on the transcrip-
tion level. In principle, tumor gene expression profiles can
serve as molecular fingerprints for cancer classification. Re-
searchers believe that gene expression profiling could be a
precise, objective, and systematic method for cancer classi-
fication [19, 26, 33]. Many classifiers have been applied
to cancer classification, such as nearest neighbor, artifi-
cial neural networks, support vector machines, boosting,
weighted voting, etc. [5, 9, 10, 11, 17, 19, 26, 31, 33, 38,
45, 47].

Although gene expression profiling provides a great op-
portunity for accurate and objective cancer diagnosis, the
classification task in this context is very challenging be-
cause of the very high dimensionality of data since gene
expression data usually involve thousands of genes. The
high dimensionality is a major practical limitation facing
many pattern recognition technologies, especially when the
number of samples is small. In practice, it has been ob-
served that a large number of features may degrade the per-
formance of classifiers if the number of training samples is
small relative to the number of features [24, 35, 36]. This
fact, which is referred to as the “peaking phenomenon”, is
caused by the “curse of dimensionality” [4]. It is generally
accepted that one needs at least 5 – 10 times as many train-
ing samples per class as the number of features to obtain
well-trained (robust) classifiers [14, 24, 35]. In the case of
cancer classification, the number of tumor samples is usu-
ally only several dozen due to limitations on sample avail-
ability, identification, acquisition, time, and cost. On the
other hand, the dimensionality (number of genes) is many
thousands. Consequently, dimensionality reduction is es-
sential to cancer classification.

In the past several decades, many dimension reduction
techniques have been proposed. Roughly, these methods
follow two approaches, feature selection and feature extrac-
tion. Feature selection methods choose a “best” subset of
features from a large initial set, taking into account both the
cost of selection and the effectiveness of each feature in the



classification process. The advantage of feature selection
is that the selected features retain their original biological
or physical interpretation. So, the retained features help us
understand patterns more precisely, and even find the bi-
ological/physical process that generates the patterns. On
the other hand, feature extraction techniques transform the
original feature space into a reduced feature space that has
fewer dimensions with little reduction on the effectiveness
of classifier. Feature extraction generally provides a bet-
ter discriminative ability than feature selection. However,
the new features generated by (nonlinear) feature extraction
may not have a clear biological/physical meaning.

Currently, almost all gene-expression-based cancer clas-
sification systems employ some feature selection method
for dimension reduction. Ideally, one should select the ex-
pression levels of tumor-specific genes for classification.
However, only few tumor-specific molecular markers are
currently known by molecular oncology. Instead, we have
to select marker genes computationally. Of the applied fea-
ture selection methods, the single-gene-rank approach is the
most common. This approach ignores the interdependence
among genes and ranks the relative class separation of each
feature independently. The top ranked genes are selected
for training the classifier. For example, Golub et al. used
the signal-to-noise (S2N) metric ratio P (g) = |µ1−µ2|

σ1+σ2
to

rank genes, where µ1 and µ2 are the mean expression levels
of gene g in classes 1 and 2, respectively, and σ1 and σ2

are the standard deviations of expression levels in classes
1 and 2, respectively [19]. Of course, such univariate fea-
ture selection methods are not optimal because a subset of
top k ranked genes is not guaranteed to be the best among
all subsets of k genes. In particular, many genes are coex-
pressed due to the complicated genetic networks. Thus, the
expression of genes is not independent and it is very hard
for univariate feature selection methods to capture the joint
discriminant capability of genes.

To improve single-gene-ranking, Bø and Jonassen sug-
gested gene-pair-ranking that simultaneously analyzes pairs
of genes to decide the subset of marker genes [6]. Clearly,
it is not sufficient to investigate the joint discriminant capa-
bility of only a pair of genes. More generally, subsets of
K > 2 features should be considered. However, it is not
practical to jointly select a subset of genes in a brute-force
way. For example, the number of ways to select 50 elements
from 2000 elements is approximately 10100. Instead, some
heuristic has to be applied. In [28, 29], for instance, Li et
al. proposed the GA/KNN method for gene selection. First,
GA/KNN finds many (random) subsets of K > 2 genes
of expected classification power using a Genetic Algorithm
(GA). The “fitness” of each subset of genes is determined
by its ability to classify the training set samples according
to the k-nearest neighbor (kNN) method. When many such
subsets of genes are obtained, the frequencies with which

genes are selected are analyzed. The most frequently se-
lected genes are presumed to be the most relevant to sam-
ple distinction and are finally used for prediction. Although
GA/KNN avoids brute-force search, it is still much slower
than univariate feature selection and our proposed method
(to be discussed later). The user also has to determine many
parameters of the algorithm, such as chromosome length,
the number of chromosomes, termination metric, etc.

Due to its popularity and success in many application
areas, some researchers have used support vector machine
(SVM) to select features. For example, the one-dimensional
SVM method ranks genes by the accuracies of single-gene
SVM classifiers [40]. This is actually an univariate feature
selection method and does not exhibit superiority to other
univariate methods [30]. Note that, any other classifiers
may be employed instead of SVM in this approach. An-
other feature selection method based on SVM is recursive
feature elimination (RFE) [33]. RFE recursively removes
features based on the absolute magnitude of the hyperplane
elements of trained SVM. In RFE, the SVM is trained with
all genes at first. The expression values of genes whose ab-
solute value of corresponding hyperplane element is in the
bottom 10% are removed. Then, the SVM is retrained with
the selected genes. This procedure is repeated iteratively to
study prediction accuracy as a function of the gene num-
ber. It was reported that RFE achieves the similar results
as the signal-to-noise ratio method [19] and radius-margin-
ratio method [31, 44] on the GCM dataset [33].

It was observed that no matter what feature selection
method is employed, at least 50 (and frequently more) fea-
tures would need be chosen and used for classification in
general [39]. This number is quite far from the recom-
mended 5 – 10 times ratio of samples to features per class
for the training of a robust classifier, and thus the estimated
error rate could be greatly biased [14, 24, 35]. Hence, it
is not clear how well the previously proposed methods per-
form if large datasets are available.

In this paper, we propose a novel linear feature extrac-
tion method for dimension reduction in cancer classification
based on linear discriminant analysis (LDA). After dimen-
sion reduction, a template matching procedure is employed
for classification. LDA can map the data into the discrimi-
nant space with a very low dimensionality of c− 1, where c
is the number of classes. For instance, the mapped space is
one dimensional for binary classification. So, the mapped
data meet the recommended 5 – 10 times ratio of samples
to features per class and thus even a small number of sam-
ples are sufficient to train a good classifier. Therefore, our
method is more robust than others and the estimated error
rates are more accurate and trustable. Although the method
sounds straightforward, there is a big challenge. Namely,
the conventional LDA cannot be applied when the within-
scatter matrix Sw is singular due to the small sample size
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problem [16]. The small sample size problem arises when
the number of samples is smaller than the dimensionality
of samples, which always happens in cancer classification.
To overcome the small sample size problem, we propose a
generalized linear discriminant analysis (GLDA) by care-
fully investigating the properties of scatter matrices Sb, Sw

and St. GLDA is mathematically well-founded and coin-
cides with the conventional LDA when Sw is nonsingular.
Different from the conventional LDA, GLDA does not as-
sume the nonsingularity of Sw, and thus naturally solves
the small sample size problem. To deal with the high di-
mensionality of scatter matrices, we also develop a fast al-
gorithm for GLDA based on singular value decomposition
(SVD). Our experimental results show that the method per-
forms well. Especially on some difficult instances that have
very small samples to genes per class ratios, our method
achieves much higher accuracies than widely used classi-
fication methods such as support vector machines, random
forests, etc.

The rest of the paper is organized as follows. Section
2 introduces LDA and our method for cancer classifica-
tion. Section 3 discusses the small sample size problem and
presents our GLDA. In this section, we also develop a fast
algorithm for GLDA to accommodate the high dimensional-
ity of gene expression data. In Section 4, we describe some
experimental results on several public cancer gene expres-
sion datasets in comparison with many other methods. Sec-
tion 5 concludes the paper with some directions of further
research.

2 Linear Discriminant Analysis and Cancer
Classification

Before, a feature extraction method, principal compo-
nent analysis (PCA), had been applied for dimensionality
reduction in cancer classification [26]. PCA is a linear map-
ping that minimizes the mean squared error criterion [25].
PCA computes the d largest eigenvectors of the covariance
matrix of D-dimensional samples. The d largest eigenvec-
tors that constitute the mapping matrix are also called as
the principal components. These few principal components
describe most of the variance of the data. By expanding
the data on these orthogonal principal components, we have
the minimal reconstruction error. However, the decorrela-
tion and high measures of statistical significance provided
by the first few principal components are no guarantees of
revealing the class structure that we need for proper classifi-
cation. As done in many face recognition systems [42], d is
usually set to n−1 for no information loss when the sample
size is much smaller than the dimensionality, where n is the
number of samples. However, such a setting cannot meet
the recommended 5 – 10 times ratio of samples to features
per class. Besides, the fact that the category information

associated with samples is neglected also implies that PCA
may be significantly suboptimal.

Instead of PCA, we employ linear discriminant analysis
(LDA, also called Fisher’s Linear Discriminant) [12, 34],
which is a supervised feature extraction (and classification)
method. In many applications, LDA has proven to be very
powerful and performs much better than PCA. Besides,
LDA can map the data into the discriminant space of di-
mensionality c − 1 so that we can meet the recommended
5 – 10 times ratio of samples to features per class. Thus,
we can classify tumors more robustly. Recall that LDA is
given by a linear transformation matrix W ∈ RD×d max-
imizing the so-called Fisher criterion (a kind of Rayleigh
coefficient) [12, 34]

J(W) = tr

(
WT SbW
WT SwW

)
(1)

where Sb =
∑c

i=1 pi(mi−m)(mi−m)T and Sw =∑c
i=1 piE[(x − mi)(x − mi)T |Ci] =

∑c
i=1 piΣi are the

between-class scatter matrix and the within-class scatter
matrix, respectively; c is the number of classes; mi and
pi are the mean vector and a priori probability of class i,
respectively; m =

∑c
i=1 pimi is the overall mean vector;

Σi is the covariance matrix of class i; D and d are the
dimensionalities of the data before and after the transfor-
mation, respectively; and tr denotes the trace of a square
matrix, i.e. the sum of the diagonal elements. Besides, the
total/mixture scatter matrix, i.e. the covariance matrix of all
samples regardless of their class assignments, is defined as
St = E[(x − m)(x − m)T ] = Sw + Sb [16]. In LDA, the
transformation matrix W is constituted by the largest eigen-
vectors of S−1

w Sb to maximize (1) by assuming the nonsin-
gularity of Sw. Since S−1

w Sb has at most d = min(c−1,D)
non-zero eigenvalues, W is usually constituted by the cor-
responding eigenvectors w1, . . . ,wd. For cancer classifica-
tion, d is at most c−1 since the number of classes is always
less than the dimensionality. For a new sample x, the pre-
dicted class is

C(x) = arg min
k

d∑
i=1

(wT
i (x − mk))2 (2)

i.e. the class whose mean vector is closest to x in the dis-
criminant space. Note that for binary classes, one can easily
adjust the above decision rule in order to prefer sensitivity
or specificity.

As a linear feature extraction method, LDA could also
be used to identify important marker genes for further in-
vestigation. After training, the elements of each column
vector in the mapping matrix of LDA can be thought of as
the weights of genes, which determine the importance of
genes in classification. By ranking the absolute values of
the elements of column vectors in the mapping matrix, we
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can select marker genes that have the highest ranks. These
selected genes may be helpful to identify tumor-specific
molecular markers. Moreover, our method considers the
correlation among all genes and uses all genes to train the
classifier, which is different from univariate feature selec-
tion. Thus, the selected marker genes may be more biologi-
cally meaningful.

Although LDA performs well in many applications, we
cannot directly use LDA for cancer classification because
of the small sample size problem [16], i.e. the number of
samples is smaller than the dimensionality of samples. Re-
call that the rank of Sw is less than n − c [16], where n is
the number of samples and c is the number of classes. So,
Sw would be singular (and thus LDA cannot be applied)
if the number of samples minus the number of classes is
smaller than the dimensionality of samples. This situation
always happens in cancer classification since the data con-
tains several thousand genes but only a few dozen samples.
To overcome the small sample size problem, we develop a
generalized linear discriminant analysis (GLDA) that works
even when Sw is singular by taking advantage of some spe-
cial properties of the scatter matrices as shown in the next
section.

3 Generalized Linear Discriminant Analysis

In this section, we present the generalized linear discrim-
inant analysis. The first subsection reviews some necessary
details of the conventional LDA method. In this subsection,
we will also briefly review previous work on solving the
small sample size problem with LDA. In the second subsec-
tion, we present some properties of scatter matrices and our
method to maximize Fisher’s criterion, which works even
when Sw is singular. Finally, we show a fast algorithm for
GLDA in the last subsection.

3.1 Conventional Linear Discriminant Analysis

In order to find a W maximizing (1), we take the deriva-
tive of (1) with respect to W [16],

∂

∂W
tr((WT SwW)−1(WT SbW))

= −2SwW(WT SwW)−1(WT SbW)(WT SwW)−1

+ 2SbW(WT SwW)−1 (3)

Equating (3) to zero, an optimal W must satisfy

SbW = SwW(WT SwW)−1(WT SbW) (4)

If Sw is nonsingular, we can multiply its inverse to both
sides of Equation (4) and obtain the conventional LDA
through simultaneous diagonalization of Sw and Sb [16].

When Sw is singular due to the small sample size problem,
however, this procedure cannot be applied.

In recent years, many researchers have noticed this prob-
lem and tried to overcome the computational difficulty with
LDA. A simple and direct attempt is to replace the in-
verse S−1

w with the pseudo-inverse S+
w [41]. However, it

does not guarantee that Fisher’s criterion is still optimized
by the largest eigenvectors of S+

wSb. Another approach
is to first reduce the dimensionality with some other fea-
ture selection/extraction method and then apply LDA on the
dimensionality-reduced data. For instance, Belhumeur et
al. proposed the Fisherface (also called PCA+LDA) method
which first employs PCA to reduce the dimensionality of the
feature space to n−c, and then applies the standard LDA to
reduce the dimensionality to c−1 [3]. Note that this method
is sub-optimal because PCA has to keep n − 1 principal
components in order not to lose information. However, the
first step of PCA+LDA keeps only n − c principal compo-
nents. Such a setting will lose too much information if the
number of classes is large.

To handle the singularity problem, it is also popular to
add a singular value perturbation to Sw to make it nonsin-
gular [22]. A similar but more systematic method is regu-
larized discriminant analysis (RDA) [15]. In RDA, one tries
to obtain more reliable estimates of the eigenvalues by cor-
recting the eigenvalue distortion in the sample covariance
matrix with a ridge-type regularization. Besides, RDA is
also a compromise between LDA and QDA (quadratic dis-
criminant analysis), which allows one to shrink the separate
covariances of QDA towards a common covariance as in
LDA. Penalized discriminant analysis (PDA) is another reg-
ularized version of LDA [20, 21]. The goals of PDA are not
only to overcome the small sample size problem but also to
smooth the coefficients of discriminant vectors for better in-
terpretation. In PDA, Sw is replaced with Sw +λΩ and then
LDA proceeds as usual, where Ω is a symmetric and non-
negative definite penalty matrix. The choice of Ω depends
on the problem. If the data are log-spectra or images, Ω is
defined in such a way so as to force nearby components of
discriminant vectors to be similar. The main problem with
RDA and PDA is that they do not scale well. In applica-
tions such as face recognition and cancer classification with
gene expression profiling, the dimensionality of covariance
matrices are often more than ten thousand. It is not prac-
tical for RDA and PDA to process such large covariance
matrices, especially when the computing platform is made
of PCs.

Recently, several methods that play with the null space of
Sw have been widely investigated. A well-known null sub-
space method is the LDA+PCA method [8]. When Sw is of
full rank, the LDA+PCA method just calculates the largest
eigenvectors of S−1

t Sb to form the transformation matrix.
Otherwise, a two-stage procedure is employed. First, the
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data are transformed into the null space V0 of Sw. Then,
it tries to maximize the between-class scatter in V0, which
is accomplished by performing PCA on the between-class
scatter matrix in V0. Although this method solves the small
sample size problem, it could be sub-optimal because it
maximizes the between-class scatter in the null space of
Sw instead of the original input space. For example, the
performance of the LDA+PCA method drops significantly
when n − c is close to the dimensionality D. The reason is
that the dimensionality of the null space V0 is very small in
this situation, and too much information is lost when we try
to extract the discriminant vectors in V0. LDA+PCA also
needs to calculate the rank of Sw, which is an ill-defined op-
eration due to floating-point imprecision. Another problem
with LDA+PCA is that the computational complexity of de-
termining the null space of Sw is very high. In [23], a more
efficient null subspace method was proposed, which has the
same accuracy as LDA+PCA. This method first removes the
null space of St, which has been proven to be the common
null space of Sb and Sw, and useless for discrimination.
Then, LDA+PCA is performed in the lower-dimensional
projected space. Direct LDA is another null space method
that discards the null space of Sb [46]. This is achieved by
diagonalizing first Sb and then diagonalizing Sw, which is
in the reverse order of conventional simultaneous diagonal-
ization procedure. In Direct LDA, one may also employ St

instead of Sw. In this way, Direct LDA is actually equiv-
alent to the PCA+LDA [46]. Therefore, Direct LDA may
be regarded as a “unified PCA+LDA” since there is no sep-
arate PCA step. Recently, we proposed a new feature ex-
traction criterion, the maximum margin criterion (MMC),
to avoid the small sample size problem [27]. A feature
extractor based on MMC tries to maximize Sb − Sw after
the dimensionality reduction. From a geometric standpoint,
MMC maximizes the (average) margin between classes. In
what follows, a direct improvement of LDA is proposed to
overcome the small sample size problem.

3.2 The Proposed Method

It is known that Fisher’s criterion may also be written as

J(W) = tr

(
WT SbW
WT StW

)
(5)

which is exactly equivalent to Equation (1) when Sw is non-
singular [16]. However, there is an important difference
between Equations (1) and (5) when St is singular (so is
Sw). It is well known that the null space of Sw contains
the important discriminatory information. As pointed out
in [15], the discriminant function is heavily weighted by
the smallest eigenvalues of Sw and the directions associ-
ated with their eigenvectors. When the small sample size
problem occurs, these smallest eigenvalues are estimated to

be 0. That is, the corresponding eigenvectors are in the null
space of Sw. Besides, it was also experimentally shown that
the null space of Sw is crucial for discriminant analysis [8].
Unfortunately, we cannot take the derivative of Equation (1)
in the null space of Sw to find the optimal solution because
the vectors in the null space of Sw are the singular points
of Equation (1). In contrast, the null space of St is a sub-
space of the null space of Sb, which is useless for extracting
the discriminatory information [23]. Thus, we can safely
take the derivative of Equation (5) out of the null space of
St in order to find the optimal solution. Therefore, we will
use Equation (5) as the optimization criterion in the rest of
paper.

In our proposed method and associated lemmas, the
Moore-Penrose inverse is used, which is defined as:

Definition 1 (Moore-Penrose Inverse) A matrix A+ sat-
isfying the following conditions is unique and is called the
Moore-Penrose inverse of A:

AA+A = A A+AA+ = A+

(A+A)T = A+A (AA+)T = AA+

One may also define the matrix 1-inverse A− by requiring
only the first condition. However, such an inverse is not
unique in general. Although most of our results also hold
for the matrix 1-inverse, we confine ourselves to the Moore-
Penrose inverse in this paper for uniquity.

The following lemmas will be needed in the proof of the
main theorem.

Lemma 2 StS+
t (x − m) = x − m

Proof. First, we can prove

E[(I − StS+
t )(x − m)] = (I − StS+

t )E[x − m] = 0

and

cov((I − StS+
t )(x − m))

= (I − StS+
t )cov(x − m)(I − StS+

t )T

= (I − StS+
t )St(I − StS+

t )T

= (St − StS+
t St)(I − StS+

t )T

= (St − St)(I − StS+
t )T = 0

So,
(I − StS+

t )(x − m) = 0

i.e.,
StS+

t (x − m) = x − m

Lemma 2 means that any centered sample x − m is the
eigenvector of StS+

t corresponding to eigenvalue 1. In this
sense, it is natural that both Sb and Sw are constituted by the
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eigenvectors of StS+
t because the column vectors of both

Sb and Sw are just the linear combinations of centered sam-
ples. These will be shown in Lemmas 3 and 4 below.

Define

M = [
√

p1(m1 − m), . . . ,
√

pc(mc − m)]

where c is the number of classes; mi and pi are the mean
vector and a priori probability of class i, respectively; and
m is the overall mean vector. So,

Sb = MMT

and

M = [E[
√

p1(x − m)|C1], . . . , E[
√

pc(x − m)|Cc]]

Lemma 3 StS+
t Sb = Sb

Proof. By Lemma 2, we have

StS+
t (x − m) = x − m

Obviously,

StS+
t

√
pi(x − m) =

√
pi(x − m)

and

StS+
t E[

√
pi(x − m)|Ci] = E[

√
pi(x − m)|Ci]

for i = 1, . . . , c. Thus,

StS+
t M = M

StS+
t MMT = MMT

i.e.,
StS+

t Sb = Sb

Using Lemma 3, it is straightforward to prove a similar
lemma for Sw

Lemma 4 StS+
t Sw = Sw

From Lemmas 3 and 4, we also have SbS+
t St = Sb and

SwS+
t St = Sw since Sb, Sw, and St are symmetric.

The following theorem is the foundation of the GLDA
method. That is, Fisher’s criterion (Equation (5)) is max-
imized by the largest eigenvectors of S+

t Sb. When Sw is
nonsingular, St is also nonsingular and S+

t is equal to S−1
t .

Thus, GLDA coincides with the conventional LDA when
Sw is nonsingular. Note that our method is very different
from the naive method that simply replaces the inverse S−1

w

with the pseudo-inverse S+
w , which has no rigorous mathe-

matical support. In fact, we know that Equation (1) is not
valid when Sw is singular. It is meaningless to just use the
pseudo-inverse S+

w in this situation. On the other hand, we

carefully analyze the properties of scatter matrices and if the
null spaces of scatter matrices contain the discriminatory in-
formation. Our method is supported by the rigorous proofs
(see below) and thus mathematically well-founded. Loosely
speaking, GLDA can be regarded as a special case of PDA
in the sense that Ω = Sb and λ = 1. Note that Ω should
be chosen intelligently in PDA so that St + λΩ is invert-
ible [20]. However, St + Sb is usually singular in GLDA.
Different from the general PDA, GLDA has a closed-form
solution. Later, we will also develop a fast algorithm of
GLDA to efficiently handle the high dimensionality of data.
In contrast, PDA encounters the computational difficulties
when dealing with very high dimensional data.

Theorem 5 Fisher’s criterion (Equation (5)) is maximized
by the largest eigenvectors of S+

t Sb.

Proof. Similar to the procedure for obtaining (4), we obtain
the following equation by taking the derivative of (5) with
respect to W and equating it to zero.

SbW = StW(WT StW)−1(WT SbW) (6)

Note that we have to restrict the domain of W to be outside
the null space of St in order to take the derivative. As we
mentioned before, the null space of St is a subspace of the
null space of Sb, which does not contain any discriminatory
information [23]. Thus, such a restriction does not limit the
discriminant capacity of the method.

Since the null space of St is a subspace of the
null space of Sb [23], we can simultaneously diagonal-
ize two symmetric matrices WT SbW and WT StW to
Λ =diag[λ1, . . . , λd] and I [16]:

PT (WT SbW)P = Λ (7)

PT (WT StW)P = I (8)

where P is a d × d nonsingular matrix and d is less than
or equal to the rank of St. Besides, Λ ≥ 0 because Sb is
positive semidefinite [16]. So, we have

WT SbW = (P−1)T ΛP−1 (9)

WT StW = (P−1)T P−1 (10)

Using Equation (9) and (10), we can simplify the right hand
side of Equation (6) as follows:

StW(WT StW)−1(WT SbW)

= StW[(P−1)T P−1]−1[(P−1)T ΛP−1]

= StWPΛP−1 (11)

Then combining (6) and (11) leads to

SbW = StWPΛP−1 (12)

SbWP = StWPΛ (13)
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Plugging in Sb = SbS+
t St, we obtain

SbS+
t StWP = StWPΛ (14)

Denoting K = StWP, (14) can be expressed as

SbS+
t K = KΛ (15)

which means that the column vectors of K are the eigen-
vectors of SbS+

t and λi, i = 1, . . . , d are the corresponding
eigenvalues.

Because Fisher’s criterion is invariant under any nonsin-
gular linear transformation [16], we also have

J(W) = J(WP)

= tr((PT WT StWP)−1(PT WT SbWP))
= tr(Λ) = λ1 + · · · + λd

Hence, in order to maximize the objective function, we have
to choose the column vectors of K as the d largest eigenvec-
tors of SbS+

t . Since K = StWP, we have

J(S+
t K) = J(S+

t StWP) = J(S+
t StW)

= tr((WT StS+
t StS+

t StW)−1(WT StS+
t SbS+

t StW))

= tr((WT StW)−1(WT SbW)) = J(W)

because StS+
t Sb = Sb and StS+

t St = St. In other words,
the optimal transformation W is

W = S+
t K (16)

By Equation (15), we have

S+
t SbS+

t K = S+
t KΛ (17)

S+
t SbW = WΛ (18)

i.e., the column vectors of W are the eigenvectors of S+
t Sb.

Since the rank of Sb is c−1, there are only c−1 eigenvec-
tors to constitute the mapping matrix W. In LDA/GLDA,
we also require W to be orthonormal, which help preserve
the shape of the distribution of the data.

3.3 A Fast Algorithm

Although the above GLDA solves the small sample size
problem, we cannot apply it to cancer classification with-
out developing a fast algorithm given the dimensionality of
gene expression data. Note that both St and Sb have the
dimensionality D × D, where D is the number of genes.
Since D is usually many thousands, it is very time and
memory consuming to calculate S+

t and the eigenvectors
of S+

t Sb using common computational methods. In what

ALGORITHM GENERALIZED LINEAR DISCRIMINANT

ANALYSIS

Input: A gene expression dataset containing n samples
with corresponding labels from c classes.
Output: The mapping matrix W.
Method:

1: Calculate M = [
√

p1(m1 − m), . . . ,
√

pc(mc − m)]
and X = 1√

n
[(x1 − m), . . . , (xn − m)].

2: Perform the SVD X = UΛ
1
2 VT

3: S+ 1
2

t = UΛ− 1
2 UT

4: Perform the SVD S+ 1
2

t M = ŨΛ̃
1
2 ṼT

5: W = S+ 1
2

t Ũ

Figure 1. A fast algorithm of generalized lin-
ear discriminant analysis.

follows, we will devise a fast algorithm to efficiently cal-
culate S+

t and the eigenvectors of S+
t Sb via singular value

decomposition (SVD). SVD expresses a real n × m matrix
A as a product A = UΛ

1
2 VT , where Λ

1
2 is a diagonal ma-

trix with decreasing non-negative entries, and U and V are
n × min(n,m) and m × min(n,m) orthonormal column
matrices [18]. The columns of U and V are the eigenvec-
tors of AAT and AT A, respectively, and the nonvanishing
entries of Λ

1
2 are the square roots of the non-zero eigenval-

ues of AAT and AT A.
Since St is symmetric, we can calculate its Moore-

Penrose inverse through eigen decomposition. Suppose
St = UΛUT =

∑
λiuiuT

i , where the columns ui of
U are the mutually orthonormal eigenvectors of St, and
Λ is a diagonal matrix of the corresponding eigenvalues
λi. The Moore-Penrose inverse is S+

t = UΛ−1UT . Note
that St is estimated by 1

n

∑n
i=1(xi − m)(xi − m)T and

can be expressed in the form St = XXT with X =
1√
n
[(x1 − m), . . . , (xn − m)]. Thus, we can obtain the

eigenvalues λi and the corresponding orthonormal eigen-
vectors ui of St through the SVD of X. Note that dimen-
sionality of X is D × n, where n is the number of samples.
Since n is only a few dozen and is much smaller than D in
practice, the SVD of X is much faster than the eigen de-
composition of St.

To obtain the eigenvectors of S+
t Sb, we follow an indi-

rect approach. Let S+ 1
2

t = UΛ− 1
2 UT . By Equation (18),

we have

S+ 1
2

t SbS+
t K = S+ 1

2
t KΛ̃

S+ 1
2

t SbS
+ 1

2
t (S+ 1

2
t K) = (S+ 1

2
t K)Λ̃

i.e., the column vectors of S+ 1
2

t K are the eigenvectors of

S+ 1
2

t SbS
+ 1

2
t . Recall Sb = MMT with M = [

√
p1(m1 −
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m), . . . ,
√

pc(mc − m)], we obtain S+ 1
2

t SbS
+ 1

2
t =

(S+ 1
2

t M)(S+ 1
2

t M)T . Thus, we can obtain S+ 1
2

t K by the

SVD of S+ 1
2

t M. Since S+ 1
2

t M has the dimensionality
D × c and the number of classes c is very small, it is

very fast to compute the SVD of S+ 1
2

t M. Finally, we get

W = S+ 1
2

t (S+ 1
2

t K) by Equation (16).
A concise description of the algorithm is shown in Figure

1. Note that we may skip calculating S+ 1
2

t in step 3. When

S+ 1
2

t is needed later, we can calculate it on the fly to save
memory by arranging the order of matrix multiplications.

4 Experiments

In this section, we extensively compare our new method
with other methods in the literature on many public can-
cer datasets. First, we compare GLDA with PDA [20, 21].
Then, we compare our method with a typical univariate fea-
ture selection method [11]. This also serves to compare our
method with other widely used classifiers in cancer classi-
fication. We will also compare our method with GA/KNN,
which is a multivariate feature selection methods [28, 29].
Finally, we compare our method with support vector ma-
chine with recursive feature elimination (RFE) [33].

4.1 Data

In the experiments, we test our new method on seven
public datasets, Leukemia [19], Colon [2], Prostate [37],
Lymphoma [1], SRBCT [26], Brain [32], and GCM [33].
The leukemia dataset comprises 47 acute lymphoblastic
leukemia (ALL, 38 B-cell ALL and 9 T-cell ALL) and 25
actue myeloid leukemia (AML) samples with the expres-
sion levels of 3571 genes. The colon dataset has the ex-
pression levels of 2000 filtered genes in 40 tumor and 22
normal colon tissues. The prostate dataset contains the
expression levels of 6033 filtered genes in 52 tumor and
50 normal prostate tissues. The lymphoma dataset con-
tains 62 samples of 3 classes: 42 diffuse large B-cell lym-
phoma, 9 observations of follicular lymphoma, and 11 cases
of chronic lymphocytic leukemia. The expression levels
of 4026 genes in these samples are used in the experi-
ments. The SRBCT data consists of 63 samples of four sub-
classes of small, round blue cell tumors of childhood (SR-
BCTs), which include neuroblastoma (NB), rhabdomyosar-
coma (RMS), non-Hodgkin lymphoma (NHL), and the Ew-
ing family of tumors (EWS). The number of genes is 2308.
The brain dataset is the dataset A in [32] that has 42 samples
of 10 medulloblastomas, 10 malignant gliomas, 10 atypical
teratoid/rhabdoid tumors (AT/RTs), 8 primitive neuroecto-
dermal tumors (PNETs) and 4 normal cerebella. The brain
dataset contains the expression of 5597 genes. The GCM

dataset is a very complicated dataset, which is a collec-
tion of 14 primary human cancer classes with the expres-
sion levels of 16063 genes [33]. These 14 common tu-
mor classes account for ≈ 80% of new cancer diagnoses
in the U.S. The GCM data consist of one training dataset
of 144 primary tumor samples and one test dataset of 54
samples (46 primary and 8 metastatic). We combine the
144 samples of training dataset and 46 primary tumor sam-
ples of test dataset together and use the total 190 sam-
ples in the experiments. Before classification, the gene
expression data are usually preprocessed in practice. In
the experiments, we use the preprocessed data of the first
six datasets by M. Dettling [9], which can be downloaded
from http://stat.ethz.ch/∼dettling/bagboost.html. The pre-
processing procedure includes base 10 log-transformation,
normalization (with mean 0 and variance 1), and missing
value imputation (by k-nearest neighbor) [9, 11]. Because
the values in the GCM dataset are the raw average differ-
ence values (maybe negative) output from the Affymetrix
software package, we do not perform the log-transformation
and only normalize the values to mean 0 and variance 1.
The properties of datasets are summarized in the top row of
Table 1.

4.2 Results

The experimental procedure is as follows. For each
dataset, we randomly split it into three parts in a class-
proportional manner, of which two parts are used for train-
ing (both feature selection/extraction methods and classi-
fiers) and the last part is kept for test. This procedure is
repeated for 200 times and the averages and standard devia-
tions of error rates are listed in Table 1. As shown in the ta-
ble, GLDA performs well overall. To compare GLDA with
other methods that try to solve the small sample size prob-
lem, we also perform PDA on the datasets because PDA
has a nice mathematical foundation and shows good perfor-
mance in some applications [20, 21]. We observe that PDA
and GLDA achieve similar results on Leukemia, Colon,
Lymphoma, and SRBCT. However, PDA could not be ap-
plied on the Prostate, Brain, and GCM because the datasets
have very high dimensionalities and thus the available mem-
ory (1GB on our machine) is not sufficient for PDA.

In what follows, we compare our method with a uni-
variate feature selection method. Because it was reported
that various feature selection methods have the similar per-
formance for cancer classification [30], it is sufficient to
compare our method only with a typical feature selection
method. In particular, we compare our method with the uni-
variate feature selection method of Dudoit et al. [11], which
employs a metric similar to LDA:

BSS(j)
WSS(j)

=
∑

i

∑
k I(yi = k)(x̄kj − x̄·j)2∑

i

∑
k I(yi = k)(xij − x̄kj)2

(19)
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Table 1. Average classification error rates and standard deviations on seven public datasets based
on 200 runs. In the table, c is the number of classes, n is the number of samples, D is the number of
genes, and RandFor stands for random forests.

Features Leukemia Colon Prostate Lymphoma SRBCT Brain GCM
c 2 2 2 3 4 5 14
n 72 62 102 62 63 42 190
D 3571 2000 6033 4026 2308 5597 16063
GLDA c − 1 3.1 ± 2.8 14.5 ± 5.7 7.6 ± 3.7 0.05 ± 0.47 1.9 ± 2.6 16.6 ± 8.8 17.9 ± 3.8
PDA c − 1 3.3 ± 2.7 14.0 ± 5.7 N/A 0.17 ± 0.88 1.7 ± 2.4 N/A N/A
RandFor 200 3.0 ± 3.2 14.6 ± 6.2 8.0 ± 4.5 0.76 ± 2.31 2.0 ± 2.8 23.6 ± 8.3 28.1 ± 4.5
SVM 200 2.0 ± 2.5 13.7 ± 6.4 8.6 ± 4.5 1.07 ± 2.26 2.3 ± 3.1 22.5 ± 9.7 32.8 ± 4.4
DLDA 200 2.8 ± 2.9 14.4 ± 6.6 15.5 ± 7.7 1.71 ± 2.57 2.1 ± 2.7 24.0 ± 9.7 31.6 ± 5.0
kNN 200 3.7 ± 3.1 18.2 ± 6.4 11.2 ± 4.6 1.12 ± 2.24 0.9 ± 1.9 23.0 ± 8.3 44.1 ± 4.6
RandFor 50 3.8 ± 3.6 14.8 ± 6.0 7.9 ± 4.8 2.29 ± 3.63 1.6 ± 2.9 25.3 ± 9.8 34.1 ± 4.6
SVM 50 3.2 ± 3.4 13.5 ± 5.8 8.4 ± 4.5 2.07 ± 3.29 1.8 ± 3.2 25.7 ± 10.1 39.3 ± 4.6
DLDA 50 2.8 ± 2.9 13.6 ± 6.4 12.3 ± 6.5 3.86 ± 3.92 1.8 ± 3.6 25.8 ± 10.5 38.2 ± 5.2
kNN 50 4.2 ± 3.4 19.3 ± 7.2 12.6 ± 4.8 2.12 ± 3.46 1.8 ± 2.6 26.6 ± 9.6 46.8 ± 5.8
RandFor 10 4.6 ± 3.8 15.9 ± 6.4 8.8 ± 4.3 3.93 ± 4.33 17.0 ± 10.3 39.2 ± 12.5 45.4 ± 5.0
SVM 10 3.5 ± 3.5 13.3 ± 5.7 8.2 ± 4.2 4.76 ± 5.01 19.0 ± 10.6 38.8 ± 12.1 49.8 ± 5.8
DLDA 10 3.2 ± 3.5 12.9 ± 6.0 11.0 ± 5.6 7.76 ± 5.85 17.4 ± 10.1 37.3 ± 14.0 49.6 ± 6.0
kNN 10 3.6 ± 3.5 18.6 ± 6.8 11.0 ± 4.7 5.00 ± 5.16 21.6 ± 12.0 43.9 ± 12.9 54.0 ± 4.7

where x̄·j denotes the average expression level of gene j
across all samples, x̄kj denotes the average expression level
of gene j across samples belonging to class k, xij is the ex-
pression level of gene j in sample i, and yi is the class label
of sample i. The genes with the largest BSS/WSS ratios
will be used for training. In the experiments, we try to se-
lect various numbers of top ranked genes. Due to the space
limit, we report only the results with 10, 50, and 200 top
ranked genes here. We choose this feature selection method
for comparison because it has a similar standpoint as LDA.
However, it selects genes independently but LDA fully con-
siders the correlation among genes. Thus, this provides a
good opportunity to investigate if our method improves the
performance of classification compared with univariate fea-
ture selection. After feature selection, we use linear sup-
port vector machines (SVM) [43], random forests [7], k-
nearest neighbor (kNN, k = 1 here) [13], and diagonal lin-
ear discriminant analysis (DLDA) [11] 1 for classification.
Thus, the experiments also serve as a comparison between
our method and the aforementioned classification methods.
SVM and random forests are state-of-the-art machine learn-
ing methods and have proven very powerful in many appli-
cations. Although DLDA and kNN are very simple, many
researcher have reported that they work very well for cancer
classification. The weighted voting method of Golub et al.
[19] is actually a minor variant of DLDA [11], and thus we

1DLDA is actually the linear maximum likelihood discriminant rule
that assumes the diagonal covariance matrix [11].

do not include it in the experiments.

With 200 top ranked genes determined by the method
of Dudoit et al., all aforementioned methods achieve sim-
ilar results as GLDA on Leukemia, Colon, Prostate, Lym-
phoma, and SRBCT. However, GLDA achieves much bet-
ter accuracies than its competitors on the Brain and GCM,
which are very hard instances because of their large num-
bers of classes and genes. Compared with other meth-
ods, our method reduces the error rate from about 22.5%
to 16.6% on Brain and from about 28.1% to 17.9% on
GCM. Besides, we observe that, one cannot meet the rec-
ommended sample per class ratio (i.e., 5 – 10) with 200
selected genes. Thus, the estimated error rates of the com-
peting methods may be highly biased and the reliability of
their results is low. In contrast, we can easily meet the rec-
ommended ratio after the dimension reduction by GLDA,
which makes the estimated error rates more accurate and
trustable. For a meaningful comparison (of trustable error
rates), it is more suitable to compare the accuracy between
GLDA and other classifiers with 10 top ranked genes. For
such a comparison, GLDA is clearly better than all other
methods on all datasets except for Colon. For Colon, we
observe that all methods have roughly the same (high) error
rates and the error rates do not change much with differ-
ent numbers of genes. It has been reported that the colon
dataset has a sample contamination problem [28], and may
not be a suitable benchmark dataset.

Besides univariate feature selection, we would also like
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Table 2. The averages and standard devia-
tions of the error rates of GA/KNN given 10,
50, or 200 top ranked genes.

Datasets Runs 10 50 200
Prostate 100 7.3 ± 3.5 8.1 ± 4.1 8.6 ± 4.4
SRBCT 200 3.0 ± 3.4 1.3 ± 2.3 1.4 ± 2.3
Brain 200 31.5 ± 9.9 22.1 ± 8.2 21.0 ± 8.2
GCM 25 55.6 ± 5.0 41.7 ± 5.0 36.3 ± 3.6

to compare our method with the multivariate feature selec-
tion methods. Currently, two multivariate methods, gene-
pair-ranking [6] and GA/KNN [28, 29], have been proposed
in the literature. The gene-pair-ranking method gives each
pair of genes a score reflecting how well the pair in com-
bination distinguishes two classes. Because the gene-pair-
ranking method does not show a significant superiority to
other methods and is hard to extend to deal with general
gene subsets due to time complexity [6], we compare our
method only with GA/KNN below. Since most methods
can achieve a high accuracy on Leukemia, and Lymphoma
with only 10 top genes ranked by univariate methods and
Colon has a sample contamination problem, we only show
the comparison on the Prostate, SRBCT, Brain, and GCM
datasets. The experimental procedure is the same as be-
fore and the results are summarized in Table 2. However,
GA/KNN is very slow and needs a couple of weeks/months
to complete 200 runs on Prostate/GCM datasets. As a result,
we only perform GA/KNN 100 and 25 times on Prostate
and GCM, respectively. As shown in Table 1 and 2, our
method is better than GA/KNN overall although GA/KNN
performs better than univariate feature selection methods.
Note that GA/KNN achieves worse results with more genes
on the Prostate dataset, which is different from the trends
on other datasets. The reason is not clear. In principle,
one may improve the performance of GA/KNN by replac-
ing k-nearest neighbor with some advanced classifier such
as SVM. Unfortunately, it will increase the running time
significantly since these (advanced) classifiers have a much
higher time complexity than kNN, which has no training
procedure. In fact, GA/KNN is already very slow even with
kNN. For example, it takes more than five days to com-
plete 200 runs on Brain on an Athlon MP 2800+ machine.
Our method, on the other hand, needs only several min-
utes. Recall that, the user of GA/KNN also has to determine
many parameters, such as chromosome length, the num-
ber of chromosomes, termination metric, etc. In contrast,
GLDA does not need any parameters. Given the results
in Table 1 and 2, we also observe that the simple methods
such as GLDA and GA/KNN that multivariately find marker
genes can achieve better results than sophisticated classifi-

Table 3. The leave-one-out cross validation
accuracy on the GCM training dataset. The
left part is the results on genes selected by
RFE that were obtained by Ramaswamy et al.
[33]. The right part is the results on genes se-
lected by GLDA. In the table, s is the number
of selected genes per classifier.

RFE GLDA
s kNN SVM Avg. kNN GLDA

OVA OVA Genes
30 65.3% 70.8% 212 67.4% 78.5%
92 68.0% 72.2% 461 65.3% 81.9%
281 65.7% 73.4% 1132 66.0% 81.9%
1073 66.5% 74.1% 3972 66.7% 85.4%
3276 66.3% 74.7% 9821 67.4% 85.4%
6400 64.2% 75.5% 14512 67.4% 84.7%
All N/A 78.0% All 67.4% 84.7%

cation methods (e.g. random forests and SVM) that com-
bined with a univariate feature selection method, especially
when the number of selected features is small. It indicates
that the choice of feature selection/extraction methods may
be more important than the choice of classifiers for cancer
classification.

In [33], Ramaswamy et al. proposed recursive feature
elimination (RFE) that uses SVMs for both classification
and feature selection. Recall that LDA can also be used to
select genes by treating the elements in the mapping ma-
trix as the weights of genes. Here we would like to com-
pare our method with RFE. Like RFE, we first train LDA
on all features/genes. Then, we select a subset of genes
and train LDA again on the selected genes. Ramaswamy
et al. applied their method on the GCM data. Since this
is a multiclass problem and SVM is a binary classifier, Ra-
maswamy et al. tried both one-versus-all (OVA) and all-
pairs (AP) output coding schemes. We list their leave-one-
out cross validation results of OVA on 144 training sam-
ples in Table 3. The results based on AP are not listed here
since they are worse than those based on OVA. For the OVA
coding scheme, one need train c binary SVMs, where c is
the number of classes (c = 14 in the discussion below).
Each SVM uses its own selected genes. Thus, the total
number of selected genes is s × c, where s is the number
of genes per classifier and listed in the first column of Ta-
ble 3. Of course, there may exist some overlap among the
marker genes of different SVMs. Because our GLDA can
solve multiclass problems directly, we use a different ex-
perimental setting. After training GLDA, we choose the top
s× (c−1) ranked genes because there are only c−1 eigen-
vectors of S+

t Sb. Here, s is the same as that in RFE for rea-
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sonable comparison. Due to the overlap among top ranked
genes of each eigenvector, the total number of genes is less
than s × (c − 1). The actual average numbers of selected
genes are listed in the fourth column of Table 3. We observe
that the overlap rate is very high. For instance, the overlap
rate is 1− 461/(92× 13) = 61.5% for s = 92, which indi-
cates that most eigenvectors give high weights to these 461
genes. Note that our method selects the genes in one step,
not recursively. After the selection, we perform kNN and
GLDA on the selected genes. Compared with RFE, GLDA
performs clearly better as shown in Table 3. The accuracy
85.4% is the highest reported accuracy on GCM as far as
we know. It is also interesting that the accuracy of SVM
decreases as the number of marker genes decreases. Our
method, however, does not show such a pattern. When the
number of genes decreases, GLDA may achieve a better ac-
curacy because the noise might be reduced. Furthermore,
the accuracy decreases when the number of genes becomes
too small because a lot of information may be lost. Finally,
we observe that kNN performs slightly better with our fea-
ture selection method than with RFE.

5 Conclusion

Gene expression profiling has great potential for accu-
rate cancer diagnosis. It also brings machine learning re-
searchers two challenges, the curse of dimensionality and
the small sample size problem. In this paper, we have pre-
sented a novel method to solve these two problems. Our
extensive experiments on seven public datasets demonstrate
that the method is able to classify tumors robustly with a
high accuracy. Besides cancer classification, our work on
generalized linear discriminant analysis may also find ap-
plications in other areas where the small sample size prob-
lem and the curse of dimensionality arise, such as image
recognition and web document classification.
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