
A Class of Edit Kernels for SVMs to Predict Translation

Initiation Sites in Eukaryotic mRNAs

Haifeng Li and Tao Jiang

Department of Computer Science and Engineering

University of California, Riverside

{hli, jiang}@cs.ucr.edu

Abstract

The prediction of translation initiation sites (TISs) in eukaryotic mRNAs has been

a challenging problem in computational molecular biology. In this paper, we present

a new algorithm to recognize TISs with a very high accuracy. Our algorithm includes

two novel ideas. First, we introduce a class of new sequence-similarity kernels based

on string edit, called the edit kernels, for use with support vector machines (SVMs)

in a discriminative approach to predict TISs. The edit kernels are simple and have

significant biological and probabilistic interpretations. Although the edit kernels are

not positive definite, it is easy to make the kernel matrix positive definite by adjusting

the parameters. Second, we convert the region of an input mRNA sequence downstream

to a putative TIS into an amino acid sequence before applying SVMs to avoid the high

redundancy in the genetic code. The algorithm has been implemented and tested

on previously published data. Our experimental results on real mRNA data show

that both ideas improve the prediction accuracy greatly and our method performs

significantly better than those based on neural networks and SVMs with polynomial

kernels or Salzberg kernel.

Keywords: Translation initiation site, support vector machine, edit distance, machine

learning, mRNA

1 Introduction

One of the main goals of the Human Genome Project is to provide a complete list of annotated

genes to serve as a “periodic table” for biomedical research. The identification of coding

regions in uncharacterized eukaryotic DNA sequences is a central problem in gene prediction.

1

Many algorithms and systems have been developed to automatically find the components of

a gene, which include translation initiation sites (TISs), exon-intron splice sites, promoters,

poly-adenylation signals, and CpG islands.

Although the algorithms (e.g. GENSCAN [8]) for finding the internal coding exons of a

gene have reached a high degree of sophistication and accuracy, finding translation initiation

sites that encode the start of protein translation, still remains a challenge. The codon ATG

is the most commonly used start codon. 1 Usually, the initiation of translation starts at

the first ATG codon in an mRNA. However, sometimes a downstream ATG is selected due

to leaky scanning, reinitiation, and internal initiation of translation (this happens only for

some viral mRNAs), etc. [25,26]. According to [24,45], downstream ATGs are used as start

codons in less than 10% of investigated eukaryotic mRNAs. So, it seems that we could easily

obtain an accuracy of more than 90% in the prediction of TISs by simply selecting the first

ATG, given complete and error-free mRNA sequences. However, it has been reported that,

in the GenBank nucleotide data that are annotated as being equivalent to mature mRNAs,

almost 40% of the sequences contain upstream ATGs [31]. This problem is enhanced when

using unannotated genomic data and when analyzing expressed sequence tags (ESTs), which

are single-pass partial sequences derived from cDNAs and are usually error-prone. All these

problems make it very difficult to predict TISs accurately.

The recognition of TISs has been extensively studied by using biological approaches, ma-

chine learning, and statistical models. In 1987, Kozak found that an ATG codon in a very

weak context is not likely to be the start site of translation [22]. The optimal context for

initiation of translation in vertebrate mRNA is GCCACCatgG. Within this consensus motif,

nucleotides in two highly conserved positions exert the strongest effect: a G residue following

the ATG codon (position +4) and a purine, preferably A, three nucleotides upstream (po-

sition −3). However, such a consensus alone is not sufficient to identify the ATG initiator

codon [25, 26]. For example, after an 80S ribosome translates the first small open reading

frame and reaches a stop codon, the 40S subunit may hold on to the mRNA, resume scan-

ning, and reinitiate at a downstream ATG codon. This procedure is called reinitiation [26].

To predict TISs, Kozak developed a weight matrix from an extended collection of data [21].

Statistical methods have also been developed to predict TISs. In 1997, Salzberg developed

a positional conditional probability matrix that takes into account the dependency between

adjacent bases [35]. In 1998, Agarwal and Bafna developed the so called generalized second-

order profiles that consider dependencies between non-adjacent bases [1]. However, both

methods suffer from high rates of false positives.

Since 1997, the machine learning approach has been applied to find TISs. With a neural

network, Pedersen and Nielsen achieved a 84.6% accuracy on a collection of 3312 vertebrate

1In some special cases, the codon GTG is used.

2

sequences [31]. Salamov et al. used six characteristics to analyze the area around a putative

start codon and employed linear discriminant analysis for the final scoring [34]. In 2000, Zien

et al. used support vector machines (SVMs) to predict TISs and achieved an 88.6% accuracy

on Pedersen and Nielsen’s data [46]. Recently, Hatzigeorgiou achieved a 94% accuracy on 475

cDNA sequences [16]. Her system includes two modules (both based on neural networks), one

sensitive to the conserved motif and the other sensitive to the coding/non-coding potential

around the start codon. The program linearly searches the coding ORF and stops once the

combination of the two modules predicts a positive score. We observe that it is meaningless

to compare the performance between Hatzigeorgiou’s approach and Pedersen and Nielsen’s

approach here since they were tested on the different data. Finding TISs was also addressed

indirectly in [11] in terms of finding the first exon of a gene contained in a genomic sequence.

In [11], Davuluri et al. developed the program FirstEF based on a decision tree consisting

of quadratic discriminant functions. Besides TISs, FirstEF can also recognize CpG islands,

promoter regions and the first splice-donor sites. Using different models to predict CpG-

related and non-CpG-related first exons, FirstEF could predict 86% of the first exons.

In this paper, we present a new algorithm to recognize TISs with very high accuracy. Our

algorithm contains two major ideas. First, we introduce a class of new sequence-similarity

kernels, called the edit kernels, for use with support vector machines (SVMs) in a discrim-

inative approach to predict TISs. Our kernels are based on the string edit distance and

have natural biological and probabilistic interpretations. Second, we treat the upstream and

the downstream regions of a putative TIS in different ways. More precisely, we convert the

downstream region of a putative TIS into an amino acid sequence before applying SVMs to

avoid the high redundancy in the genetic code. The similarity between amino acids is also

considered. The algorithm has been implemented with several variants of the edit kernel

and tested on Pedersen and Nielsen’s data set (as well as some smaller data sets derived

from this data). The experiments demonstrate that our algorithm can achieve an accuracy

of 99.90% with 99.92% sensitivity and 99.82% specificity, which are significantly better than

those of the previous algorithms.

The rest of the paper is organized as follows. Section 2 gives a brief review of SVMs and

introduces the basic edit kernel using string edit distance. Section 3 extends the edit kernel

by considering the redundancy in the genetic code and similarity between amino acids, and

presents two more sophisticated edit kernels. In Section 4, we describe some experimental

results on Pedersen and Nielsen’s data and small data sets derived from the data. The

performance of the edit kernels, the impact of the choice of the edit cost matrix on the

performance and efficiency of the SVMs, and some computational issues are discussed in

this section. We also give some intuitive explanation on why the SVMs with the above edit

kernels work so well. In Section 5, we introduce a publicly accessible online program, called

3

TISHunter, for predicting TISs based on our algorithm. Section 6 describes the prediction

results on mRNAs from the human genome. Section 7 concludes the paper with some

directions of further research.

2 Support Vector Machines and an Edit Kernel

Many methods have been proposed for classification problems in bioinformatics. Roughly,

these methods follow two approaches, the generative approach and the discriminative ap-

proach. The generative approach, e.g. hidden Markov models, builds a model for the target

pattern and then evaluates each candidate sequence to see how well it fits the model. If the

fitting score is above some threshold, then the candidate is classified into the pattern. The

discriminative approach, e.g. neural networks, tries to learn some discriminant function from

some samples that have been labeled as positive or negative. After learning, the discriminant

functions are employed to decide whether a new sample is positive or not. In this paper, we

follow the discriminative approach to recognize TISs. In particular, we will employ SVMs

with a new class of sequence-similarity kernels, the edit kernels. In what follows, we first

give a brief review of some basic concepts in the theory of SVMs. Then we introduce an edit

kernel and discuss its biological and statistical meaning.

2.1 Support Vector Machines

Given a set of independent and identically distributed samples (i.e. the training data) in

the form pairs of patterns xi and labels yi,

(x1, y1), . . . , (xℓ, yℓ) ∈ X × {±1}

we want to learn a functional dependency y = f(x; α) between xi and yi, where α is a

parameter from the set Λ. We hope that f(x; α) could make the smallest number of expected

errors on the unseen samples drawn from the same distribution.

For a linearly separable data, the SVM is the optimal hyperplane y = sign(〈w, x〉 + b)

that maximizes the margin 1/ ‖w‖2 between the classes, which is the minimum distance from

positive/negative samples to the separation hyperplane [40,41]. The reason to maximize the

margin is that hyperplanes with a larger margin have a smaller capacity (actually a smaller

upper bound on the VC-dimension) [40, 41]. In this way, the overfitting problem could be

avoided. The optimal hyperplane can be found by maximizing

L =
ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyj〈xi, xj〉 (1)

4

subject to

0 ≤ αi ≤ C, i = 1, . . . , ℓ (2)

ℓ
∑

i=1

αiyi = 0 (3)

where αi’s are the Lagrange multipliers and C is a positive constant. Solving this quadratic

programming problem, we get w, b, and thus the optimal hyperplane

y = sign

(

∑

i

αiyi〈x, xi〉 − b

)

(4)

According to the well-known Karush-Kuhn-Tucker (KKT) necessary conditions [7], the so-

lution w and b to the above quadratic programming problem must satisfy

αi(yi(〈w, xi〉+ b)− 1) = 0 (5)

It means that only the points xi on the hyperplanes 〈w, xi〉+ b = ±1 have nonzero Lagrange

multipliers αi. Thus, only these points xi make effects in the optimal hyperplane. Such

points are called support vectors.

Usually, the input data is not linearly separable. In this case, the input data is first

mapped into a high-dimensional feature space F via a nonlinear function Φ(·) : X → F .

SVMs in this high-dimensional space F can be applied since the data may be linearly sep-

arable after the mapping. However, F could have an arbitrarily large, possibly infinite,

dimensionality, which makes it impossible to map points into F directly. To overcome this

obstacle, SVMs can perform the mapping Φ implicitly. This is possible because all infor-

mation that we need supply to an SVM are the dot products 〈Φ(xi), Φ(xj)〉 in the feature

space F , which can be computed through a positive definite kernel k(·, ·) in the input data

space [2, 4]:

k(xi, xj) = 〈Φ(xi), Φ(xj)〉 (6)

The positive definite kernel (also known as Mercer kernel) is formally defined as follows [5]:

Definition 1 Let X be a nonempty set. A function k(·, ·) : X × X → R is called a positive

definite kernel 2 if k(·, ·) is symmetric (i.e. k(x, y) = k(y, x) for all x, y ∈ X) and

n
∑

i=1

n
∑

j=1

cicjk(xi, xj) ≥ 0 (7)

for all n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ R

2The definition can be extended to the more general case of complex-valued kernels. In this paper, we

will only need consider real-valued kernels.

5

For example, polynomial kernel 〈x, y〉d and Gaussian kernel e−γ‖x−y‖2

are two well-known

positive definite kernels. The matrix Kij = k(xi, xj) is called the kernel matrix, which is just

the Gram matrix of dot products Kij = 〈Φ(xi), Φ(xj)〉 in feature space F .

In practice, the kernel value k(x, y) can also be interpreted as the pairwise similarity

between x and y. For example, if x and y are unit-length vectors, the simple dot product

〈x, y〉 computes the cosine of the angle between x and y. Clearly, two “similar” vectors have

a small angle between them and thus a large cosine. Therefore, we can think of the kernel

value k(x, y) as a measure of the similarity between x and y in the feature space F . More

generally, the similarity represented by k(x, y) could be interpreted in the sense of specific

applications and does not necessarily follow the above geometrical interpretation.

2.2 An Edit Kernel

Before introducing our edit kernel, let us review the approach of Zien et al. who used SVMs

with a polynomial kernel based on Hamming similarity to recognize TISs [46]. Zien et al.

used a sparse-encoding scheme to represent nucleotides: each nucleotide is encoded by five

bits, exactly one of which is set. The position of the set bit indicates whether the nucleotide

is A, C, G, T, or N (for unknown). Using this encoding scheme, Zien et al. introduced an

SVM with the polynomial kernel

k(x, y) = 〈x, y〉d

Note that, on a sparsely encoded data, the dot product 〈x, y〉 counts exactly the number of

nucleotides that coincide in two sequences represented by x and y, i.e. the complement of

Hamming distance between x and y. In order to handle local correlations of sequences, Zien

et al. also introduced two variations of polynomial kernel, called the locality-improved kernel

and Salzberg kernel. The locality-improved kernel uses a small sliding window to scan the

input sequence and counts matching nucleotides in every window. All these counts are raised

to the power of d1 and then are added up. At last, the sum is taken to the power of d2. Here,

d1 and d2 are user-specified parameters. Salzberg kernel is similar to the locality-improved

kernel. However, instead of the original nucleotide sequences, Salzberg kernel is applied on

the sequences of log odds scores sp(x), which is defined as

sp(x) = log
P (xp at pos. p in TIS |xp−1 at pos. p− 1 in TIS)

P (xp at pos. p in ANY |xp−1 at pos. p− 1 in ANY)

where xp is the nucleotide incident at position p in the sequence corresponding to data point

x, TIS is the set of training sequences centered around TIS, and ANY is the set of all training

sequences.

Clearly, the key in the kernels of Zien et al. is the computation of the (complement

of) Hamming distance between two sequences though they also consider local positional

6

dependency. However, Hamming distance is not the best measure of dissimilarity in the

comparison of (unaligned) biomolecular sequences. First of all, it requires that the sequences

have the same length. Second, in the processes of DNA replication and evolution, the errors

like insertions and deletions (i.e. indels) of nucleotides are common. In particular, short

tandem repeats (STR) are often hotspots for indels [28]. 3 When indels are prevalent, the

Hamming distance between two sequences is often an exaggerated over-estimation of the

true dissimilarity.

On the other hand, the edit distance (also known as the Levenshtein metric [27] and evo-

lutionary distance [37]) is a more general and accurate measure of sequence dissimilarities.

The (basic, unweighted) edit distance between two sequences denotes the minimum num-

ber of edit operations that transform one sequence into the other. Typical edit operations

include insertion, deletion and substitution, although other less-frequent operations such as

transposition and block moves can also be considered. For simplicity, we only consider the

first three operations in this paper. The edit distance between two sequences is a metric and

tightly related to the optimal alignment between the two sequences.

In principle, one could perhaps find the TIS of an mRNA sequence by aligning the

sequence with some mRNA sequences with known TISs and checking if an ATG codon is the

TIS by comparing the edit distance with some threshold. However, such a naive approach

(referred to as template matching) usually has a large error rate, especially for low-quality

sequences (e.g. ESTs). Nevertheless, we observe that the above alignment approach uses a

weak classifier (template matching) with a good dissimilarity measure (edit distance). On the

other hand, Zien et al. use a sophisticated classifier (SVM) with a weak similarity measure

(the complement of Hamming distance). This observation suggests that we might be able

to recognize TISs more accurately by combining the merits of both approaches.

In order to incorporate the edit distance into SVMs, we define the edit kernel to measure

the similarity between two sequences:

k(x, y) = e−γ·edit(x,y) (8)

where edit(x, y) is the edit distance between x and y, and γ is a positive real value to

scale the kernel value for numerical stability. In fact, γ will play a very important role

in making the kernel matrix positive definite, which we will show later. The edit kernel

also has a natural probabilistic interpretation. Recall that the edit distance between two

(biomolecular) sequences is the minimum number of the edit operations that transform one

sequence into the other. Equivalently, we can think of such an edit process as a sequence

of (independent) evolutionary events. However, these evolutionary events occur in nature

3This is important because the context of a TIS includes the 5′ UTR, which usually contains STRs, for

example CpG islands.

7

with different probabilities. Let P (b|a) denote the probability of nucleotide (or amino acid,

as discussed later) a mutating into nucleotide (or amino acid) b, where a or b (but not both)

could be a space (thus denoting an indel). Although identity substitutions of the form a→ a

are not used explicitly in string edit, to satisfy edit(x, x) = 0, let us assume that P (a|a) = 1.

This assumption does not generally hold in molecular evolution, But it is usually not a

serious problem in practice. Thus, the cost of an edit operation a→ b 4 could be interpreted

as the negative logarithm of the mutation (i.e. substitution or indel) probability P (b|a) and

the edit distance between two sequences could be interpreted as the summation 5 of the

negative logarithms of the mutation probabilities:

edit(x, y) = −
∑

i

log P (yi|xi) (9)

where xi → yi is the ith mutation in an optimal edit from x into y. We call (9) the log

probability model. 6 Under this interpretation, the edit kernel defined in (8) is just the

probability, raised to the power of γ, of sequence x mutating into y:

k(x, y) =

(

∏

i

P (yi|xi)

)γ

(10)

If two sequences are similar, the mutation probability
∏

i P (xi|yi) will be large and thus

the kernel value k(x, y) will be large. Otherwise, the probability and the kernel value will

be small. Therefore, such an edit kernel measures the similarity between two sequences in

the sense of both evolution and probability. Note that, so far we have implicitly assumed

that P (a|b) = P (b|a), which may not always be true, especially for amino acids. When this

assumption does not hold, we may interpret the edit distance as

edit(x, y) = −
1

2

(

∑

i

log P (xi|yi) +
∑

i

log P (yi|xi)

)

(11)

which is the average of the negative log probability of transforming x into y and that of

transforming y into x to keep the symmetry property.

To use the edit kernel in support vector machines, we would hope that it is positive

definite. Unfortunately, it has been shown that the edit kernel is not positive definite [9,10].

4The cost is restricted to 1 or 0 in this basic string edit model. However, it will be relaxed to arbitrary

nonnegative numbers in the next section.
5The additive cost scheme corresponds to the assumption that mutations at different sites occur indepen-

dently. The assumption appears to be a reasonable approximation of the evolution of mRNAs, which are

linear and unstructured. The cost scheme can be easily extended to accommodate more general probabilistic

models such as affine gap costs.
6A similar model is the log-odds ratio model [3, 13]. However, we think that the log probability interpre-

tation is more direct and it perhaps deals with indels better.

8

However, we can still use the edit kernel in support vector machines according to the following

theorem [36].

Theorem 2 Suppose the data x1, . . . , xℓ and the kernel k(·, ·) are such that the matrix

Kij = k(xi, xj) (12)

is positive. Then it is possible to construct a map Φ into a feature space F such that

k(xi, xj) = 〈Φ(xi), Φ(xj)〉 (13)

Conversely, for a map Φ into some feature space F , the matrix Kij = 〈Φ(xi), Φ(xj)〉 is

positive.

This theorem implies that, even though the kernel k(·, ·) is not positive definite, we can still

use k(·, ·) in support vector machines or other algorithms that require k(·, ·) to correspond

to a dot product in some space if the kernel matrix K is positive for the given training data.

In fact, Theorem 2 does not even require x1, . . . , xℓ to belong to a vector space. This is

very useful for biological sequences analysis because it is hard to come up with a sensible

vector representation of biomolecular sequences. Thus, we can use the edit kernel in SVMs

if we could make the kernel matrix positive definite. This can be achieved by adjusting

the parameter γ. It is well known that a symmetric diagonally dominant real matrix with

nonnegative diagonal entries is positive definite. If we choose a large enough γ, we can make

the kernel matrix diagonally dominant and thus positive definite. In fact, this requirement

could be relaxed in practice. We found in our experiments that a reasonably large γ could

already make the kernel matrix positive definite but not diagonally dominant.

Although the edit kernel in (8) has a good biological interpretation, it cannot be applied

directly to predict TISs. First, the start codon ATG may be at different positions in different

sequences. The above simple edit/alignment approach does not pay attention to the position

of a putative start codon and the content of its neighbors (e.g. similarity to the consensus

sequence GCCACCatgG). Second, the nucleotides in the 5′ UTR upstream of a start codon

and the ones in the downstream region (i.e. nucleotides encoding amino acids) usually

follow different evolutionary processes because of the selective pressure exerted on protein-

coding regions. Therefore, we should compute the edit distance for (putative) 5′ UTRs and

downstream regions separately. In other words, we should employ the edit kernel as follows:

k(x, y) = e−γ1·edit(x′,y′)−γ2·edit(x′′,y′′) (14)

where γ1, γ2 > 0; x = x′x′′, y = y′y′′ are two (mRNA) sequences (with postulated TISs); x′, y′

and x′′, y′′ are the putative 5′ UTRs and downstream coding regions of x and y, respectively.

We call the kernel in (14) edit kernel I. We can still easily make the kernel matrix of edit

kernel I positive definite by adjusting γ1 and γ2 because the product of two positive definite

matrices is still positive definite.

9

3 Redundancy of Codons and More General Edit Costs

We can improve edit kernel I by considering the following simple biological fact. The genetic

code is highly redundant because there are 61 valid codons (including the ATG start codon)

and only 20 amino acids exist [14]. Moreover, the redundancy is not random. In fact, certain

features of the redundancy are quite regular. For example, pairs of codons of forms XYC and

XYT always code for the same amino acid and pairs of forms XYG and XYA usually code for

the same amino acid. Since the region of an mRNA downstream of the TIS codes for amino

acids, it makes sense to consider such a downstream region as an amino acid sequence rather

than a sequence of nucleotides when computing the edit distance edit(x′′, y′′). So, we define a

new kernel, edit kernel II, that has the same form as edit kernel I but with a different domain.

The domain of edit kernel I is X × X , where X = {all nucleotide sequences}. However, the

domain of edit kernel II is X ′ ×X ′, X ′ = {all sequences of nucleotides and amino acids}.

3.1 Edit Costs Based on Mutation Probabilities

In an attempt to further improve the above edit kernels, we generalize the cost model of edit

operations. Edit kernels I and II use the unit cost model, i.e. the cost of editing a into b

is 1 if a 6= b or 0 otherwise. The model’s predominant virtue is its simplicity. In general,

more sophisticated cost models should be used. For example, substitutions between two

purines (or pyrimidines), i.e. transitions, are more frequent than those between a purine

and a pyrimidine, i.e. transversions, and thus should cost less according to the connection

between edit distance and mutation probabilities. Similarly, replacing an amino acid with a

biochemically similar one should cost less than replacements using amino acids with totally

different properties. We call the kernel defined on a (weighted) edit distance using some

general edit cost matrices for nucleotides and amino acids edit kernel III.

A general edit cost matrix can be defined for nucleotides based on some fixed transver-

sion/transition ratio. The most widely used (similarity) score matrices for amino acids are

PAM [12] and BLOSUM [17] matrices. PAM matrices are based on the Dayhoff model of evo-

lutionary rates. Using an alternative approach, BLOSUM matrices were derived from about

2000 blocks of aligned sequence segments characterizing more than 500 groups of related

proteins. Although PAM and BLOSUM matrices are popular and are good for sequence

alignment, neither can be applied directly in the edit kernel because they are generated

following the log-odds ratio model rather than the log probability model.

To obtain a cost matrix for edit kernel III, we propose the following algorithm based on

the log probability model:

1. Raise the 1-PAM matrix to the power of p and denote it M ;

10

2. M ← − log M ;

3. Calculate the average value m of the diagonal of M ;

4. M ←M −m;

5. Set the diagonal elements of M to zero;

6. If there are some negative elements in M , set them to zero;

where 1-PAM is a substitution matrix that describes the probability of a substitution in

the unit time, i.e. the period during which 1% of a nucleotide (or amino acid) sequence

is expected to change. The entries of 1-PAM are of the form P (b|a, t = 1) denoting the

probability of a mutating into b in the unit time. The algorithm works as follows. By

raising 1-PAM to the power of p, e.g. p = 120 or 250, we obtain the matrix M with entries

P (b|a, t = p), which is the probability of a mutating into b in p time units. Then we take

logarithm on M and change the sign to obtain a cost matrix that is suitable for sequences with

an average divergence of p time units. In order to make it satisfy the condition edit(x, x) = 0,

we subtract the average m of the diagonal from M . Such a shift makes the average of the

diagonal of the cost matrix zero. Now we can set the diagonal to zero. 7 Usually, there may

be a very small number of off-diagonal entries slightly less than zero after the shift. We also

set them to zero to make the matrix nonnegative. We call the cost matrix calculated by

this algorithm a Substitution Cost Matrix (SCM). Note that, an SCM may be asymmetric.

When using such an asymmetric cost matrix, we need modify the edit distance definition

by taking the average of edit(x, y) and edit(y, x) in the kernel as discussed in the previous

section.

To obtain the cost matrices for nucleotides, we use the 1-PAM matrix from [30], which is

based on Kimura’s two-parameter (K2P) model of nucleotide substitutions [20]. Specifically,

the probability of a transition for each nucleotide is 0.006 and that of a transversion is 0.002.

The cost matrix with p = 250 is listed in Table 1. Note that, the matrix is symmetric.

Since the 1-PAM matrix for amino acids is not symmetric [12], a resulting SCM for

amino acids may not be symmetric. We may use such a matrix directly and modify the edit

distance definition in the kernel to make it symmetric as mentioned above. Alternatively,

we may make the resulting cost matrix symmetric by computing M ← (M + MT)/2 either

(i) immediately before step 6 or (ii) immediately before step 2. The former option seems

more logical, but it might result in an edit distance similar to the above modified edit

7One may attempt to set the diagonal entries − log P (a|a, t = p) to zero directly without the shift.

However, P (a|a, t = p) is usually small when p is large and thus − log P (a|a, t = p) is not close to zero, So,

setting the diagonal to zero directly might introduce significant unfair bias against non-identity substitutions

and indels.

11

Table 1: The SCM250 cost matrix for nucleotides.

A C G T

A 0.0000 0.3009 0.0626 0.3009

C 0.3009 0.0000 0.3009 0.0626

G 0.0626 0.3009 0.0000 0.3009

T 0.3009 0.0626 0.3009 0.0000

distance. Hence, we will only consider the latter option as an alternative, and call the cost

matrix resulted from this (alternative) approach an Approximate Substitution Cost Matrix

(ASCM). An SCM cost matrix for amino acids with p = 250 is listed in Table 2.

Finally, we need define costs for indels. Since there are few rigorous treatments of indels,

we define indel costs based on empirical experience. By some preliminary experiments, we

have found that SVMs usually perform better if we set the indel cost for 5′ UTRs small and

that for the downstream region relatively large (the actual values will be given in the next

section). This is consistent with the fact that the indels are expected to be more frequent in

5′ UTRs than in downstream regions that code amino acids.

4 Experiments

To evaluate the performance of our algorithm for predicting TISs, we test all three edit

kernels on Pedersen and Nielsen’s original data set [31] and some small data sets derived

from the data. The experimental results, as described below, show that our methods perform

significantly better than the Salzberg method, neural networks, and the SVM with Salzberg

kernel. 8 In particular, the sensitivity and specificity of our methods are much higher than

those of the previous methods. Just like accuracy, high sensitivity and specificity are both key

desirable properties in a practical prediction application. In the following, we will describe

Pedersen and Nielsen’s data set, our experimental results, and some efficiency issues in the

implementation of our algorithm.

4.1 Data

The test data consists of a collection of 3312 sequences from vertebrates, which were originally

extracted from GenBank by Pedersen and Nielsen [31]. To mimic mRNAs, all sequences

8Unfortunately, we were not able to obtain the program and data of Hatzigeorgiou and compare our

method with her method in [16]. The method of Davuluri et al. [11] requires the presence of the first introns

and thus cannot be applied to Pedersen and Nielsen’s data.

12

Table 2: The SCM250 cost matrix for amino acids.

Ala Arg Asn Asp Cys Gln Glu Gly His Ile

Ala 0.0000 1.0288 0.6270 0.6013 1.1485 0.7606 0.5934 0.3688 0.9903 0.7640

Arg 1.8122 0.0000 1.4515 1.7407 2.2667 1.1464 1.6854 2.1189 1.0766 1.8287

Asn 1.3744 1.4431 0.0000 0.9558 2.2558 1.2619 1.1007 1.3277 1.0902 1.8317

Asp 1.1885 1.5994 0.8086 0.0000 2.4359 0.9167 0.5009 1.1236 1.1471 1.8011

Cys 2.1520 2.3747 2.4974 2.8536 0.0000 2.8506 2.8806 2.6636 2.4044 2.2314

Gln 1.6104 1.2289 1.3249 1.1284 2.7457 0.0000 0.9326 1.8024 0.8330 1.9517

Glu 1.1337 1.4899 0.9001 0.4475 2.4284 0.6629 0.0000 1.1732 1.0959 1.6573

Gly 0.3518 1.2276 0.5681 0.5141 1.4189 0.9065 0.6062 0.0000 1.1413 1.2020

His 1.9552 1.2860 1.2679 1.4856 2.4181 0.9739 1.5091 2.1935 0.0000 2.2691

Ile 1.6842 2.0071 1.9466 2.0938 1.9942 2.0105 2.0369 2.1497 2.1313 0.0000

Leu 1.1537 1.3987 1.3301 1.6096 2.0744 1.0983 1.4796 1.5850 1.1605 0.1232

Lys 1.0046 0.0000 0.5183 0.7172 1.9786 0.5806 0.7472 1.1485 0.7751 1.1524

Met 2.7194 2.5547 2.8212 3.0657 3.6201 2.6505 2.9833 3.1669 2.9342 1.9184

Phe 2.1427 2.3371 2.1122 2.6012 2.3679 2.4438 2.5744 2.3206 1.8045 1.2066

Pro 0.9213 1.2422 1.2908 1.3707 1.8339 1.1129 1.2793 1.2794 1.2333 1.6099

Ser 0.6327 0.9573 0.7302 0.8164 0.9170 0.9984 0.8803 0.6450 1.0993 1.2013

Thr 0.7754 1.2408 0.9567 1.0868 1.5666 1.2364 1.1424 1.0474 1.3877 1.0372

Trp 4.1465 2.3507 4.0147 4.5089 4.4423 4.1136 4.5235 4.4084 3.9310 4.2786

Tyr 2.4368 2.8054 2.1614 2.6514 1.6218 2.6273 2.6000 2.8303 1.7231 1.9500

Val 0.9590 1.5266 1.3838 1.4980 1.4263 1.4188 1.4346 1.3315 1.5029 0.1265

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Ala 1.0608 0.9189 0.9299 1.4089 0.3837 0.4102 0.3822 2.0051 1.5063 0.6157

Arg 2.0535 0.6364 1.4917 2.2782 1.4798 1.5275 1.6300 0.9498 2.4702 1.9885

Asn 2.1256 1.1884 1.8476 2.1482 1.4958 1.2568 1.3134 2.3480 1.9161 1.8199

Asp 2.1670 1.2707 1.9026 2.4924 1.4231 1.1918 1.2914 2.8151 2.3072 1.7417

Cys 3.0225 2.8388 2.8337 2.6512 2.1350 1.6894 2.0654 3.4106 1.6243 2.0090

Gln 1.8786 1.3129 1.7412 2.4912 1.4180 1.6237 1.6749 2.6009 2.4778 1.9543

Glu 1.9149 1.2394 1.7237 2.3930 1.2870 1.2097 1.2900 2.8204 2.2546 1.6099

Gly 1.5027 1.0430 1.3131 1.7617 0.7339 0.3931 0.6308 2.2513 1.9164 0.9339

His 2.2386 1.6246 2.1971 1.9660 1.6870 1.8340 1.9248 2.2129 1.6833 2.2617

Ile 1.0006 1.9119 1.0465 1.3243 2.0545 1.8714 1.5128 2.7572 1.8350 0.6836

Leu 0.0000 1.2478 0.0000 0.2937 1.2701 1.3498 1.0543 1.1239 0.9640 0.2597

Lys 1.4263 0.0000 0.6409 1.8984 0.9669 0.7738 0.7315 1.5634 1.8331 1.2834

Met 1.5751 2.2624 0.0000 2.4703 2.9574 2.7928 2.5171 3.4405 3.1083 2.0059

Phe 1.0519 2.5536 1.3868 0.0000 2.5790 2.0818 2.0377 1.3594 0.0000 1.7456

Pro 1.6878 1.4042 1.6342 2.0554 0.0000 0.9767 1.1066 2.4848 2.3167 1.4815

Ser 1.5323 0.9043 1.2614 1.6077 0.6480 0.0000 0.5726 1.4826 1.6151 1.1126

Thr 1.4431 1.0372 1.2016 1.7432 0.9501 0.7444 0.0000 2.2463 1.7763 0.9951

Trp 4.4659 3.6745 4.2634 2.5395 4.1474 3.2582 3.9810 0.0000 2.5088 4.6172

Tyr 1.9193 2.9312 2.2830 0.1207 2.8663 2.3555 2.3499 1.7131 0.0000 2.2774

Val 0.5623 1.4650 0.5669 1.2317 1.2693 1.2151 0.9088 2.4074 1.5771 0.0000

13

Table 3: Comparison of six-fold cross validation classification accuracies among different TISs

prediction methods. The neural network results were obtained by Pedersen and Nielsen [31].

The results of the Salzberg method and the SVM with Salzberg kernel were obtained by Zien

et al. [46]. The parameters were chosen by the five-fold cross validations on a small data set.

Method Parameters Accuracy Specificity Sensitivity Correlation

Neural Network 84.6% 64.5% 82.4% 62.7%

Salzberg method 86.2% 73.7% 68.1% 61.9%

SVM d1 = 3 88.6% 76.0% 78.4% 69.6%

Salzberg kernel l = 1

SVM C = 4 93.2% 94.5% 89.3% 82.2%

edit kernel I γ1 = 0.00195

γ2 = 0.00391

SVM C = 16 96.5% 96.0% 98.0% 91.0%

edit kernel II γ1 = 0.00017

γ2 = 0.00049

were “spliced” by removing possible introns and joining the remaining exon parts. Besides,

only sequences containing at least 10 nucleotides upstream and at least 150 nucleotides

downstream of their respective start codons were selected. A very thorough reduction of

redundancy was performed to avoid over-estimating the prediction accuracy.

Because all the sequences contain TISs (i.e. they are all positive samples), we generate

our test samples (both positive and negative) as follows [31, 46]. For every potential start

codon ATG in some sequence, a new sequence of length at most 210 nucleotides is extracted.

Each of these sequences contains at most 30 nucleotides upstream and at most 180 nucleotides

downstream (relative to the A in the putative start codon ATG). This leads to 13503 training

and testing sequences, of which 3312 are positive and the rest are negative samples.

Note that in the experiments of Pedersen and Nielsen [31] and Zien et al. [46], they used

a 200 nucleotide window approach to generate samples. Each window contains a potential

TIS at the center of the window. For an ATG codon near the (left or right) end of an mRNA

sequence, each missing position in the test sequence (window) is filled with an ‘N’ (unknown).

However, here we do not need fill in ‘N’s for missing positions because our kernels are based

on string edit, which does not require the sequences have the same length.

4.2 Experimental Results

The experimental results are shown in Tables 3 and 4. All the results are based on the

six-fold cross validation method, as done in [31] and [46]. Namely, the data is divided into

14

Table 4: Comparison of six-fold cross validation classification accuracies of the SVM with

edit kernel III using different cost matrices. The parameters were chosen by five-fold cross

validations on a small data set. In the indel penalty column, the first number is the penalty

for nucleotides and the second is the penalty for amino acids.

Cost Matrix Parameters Indel Penalty Accuracy Specificity Sensitivity Correlation

SCM120 C = 32 1.00 99.64% 99.73% 99.37% 99.02%

γ1 = 0.00195 9.00

γ2 = 0.00195

SCM250 C = 16 0.35 99.84% 99.88% 99.73% 99.58%

γ1 = 0.00195 8.00

γ2 = 0.00781

ASCM120 C = 8 1.00 99.67% 99.69% 99.61% 99.10%

γ1 = 0.00195 9.00

γ2 = 0.00781

ASCM250 C = 8 0.35 99.90% 99.92% 99.82% 99.72%

γ1 = 0.00195 7.00

γ2 = 0.00781

PAM250 C = 8 0.35 97.75% 98.17% 96.44% 93.97%

γ1 = 0.00195 13.9

γ2 = 0.00195

six parts of approximately equal sizes and each part is in turn reserved for testing the SVM

learned on the other five parts. The average of the six prediction results are reported. The

parameters C, γ1, γ2 are chosen optimally by cross validation experiments on a small data set

of size 500. In the tables, accuracy is defined as (TP +TN)/N , specificity is TN/(TN +FP),
9 sensitivity is TP/(TP + FN), and correlation is Mathews correlation coefficient defined

as:

Corr. =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where N, TP, TN, FP , and FN denote the numbers of the test samples, true positives, true

negatives, false positives, and false negatives, respectively.

Using the SVM with edit kernel I, our algorithm performed reasonably well on the data.

The accuracy (93.2%) is much better than that (88.6%) of the SVM with Salzberg kernel.

In particular, the specificity (94.5%) and the sensitivity (89.3%) are significantly better than

those (76.0% and 78.4%, respectively) of the SVM with Salzberg kernel. With edit kernel

II, the accuracy is improved to 96.5%. The specificity is slightly improved to 96.0%, while

the sensitivity is significantly improved to 98.0%.

9Zien et al. used a different definition, TP/(TP + FP), which is usually called precision [15].

15

Table 5: Comparison of the accuracies among the edit kernels on small data sets of size 500,

1000, and 2000. Edit kernel III employs the SCM250 cost matrix. The accuracy is estimated

by six-fold cross validations.

500 1000 2000

Edit kernel I 86.0% 86.4% 89.5%

Edit kernel II 92.0% 92.9% 95.1%

Edit kernel III 98.6% 99.3% 99.4%

To evaluate edit kernel III, we used the cost matrices SCM120, ASCM120, SCM250, and

ASCM250, i.e. the SCM and ASCM with p = 120 and p = 250, respectively. Considering the

popularity of PAM250, we also tested edit kernel III with PAM250. Of course, the PAM250

matrix cannot be used directly in the edit kernel because the edit distance based on PAM250

does not meet the requirements of metric. Thus, we modify PAM250 as follows. We first

convert PAM250 into a cost matrix. Then we shift PAM250 up by subtracting the average

of the diagonal from every element in the matrix. Finally, we set the diagonal elements and

the two off-diagonal negative elements to zero. The comparative results of edit kernel III

with these different cost matrices are shown in Table 4, which are in general much better

than those in Table 3. Again, the parameters and gap penalties were chosen by experiments

on a small data set. The SVMs with matrices SCM120, SCM250, ASCM120, and ASCM250

all performed equally well, with only some minor differences. The accuracy is amazingly

improved to 99.9% with the cost matrix ASCM250. On the other hand, the accuracy of the

SVM with PAM250 is 97.7%, which is only slightly better than that of the SVM with edit

kernel II employing the unit cost. This could perhaps be an evidence suggesting that the log

probability model is more suitable for the edit distance in edit kernel III than the log-odds

ratio model. On the other hand, the results in Table 4 also indicate that the SVM with edit

kernel III is not very sensitive to the actual cost matrix used as long as it is based on the log

probability model (although it might require different parameters for different matrices).

In fact, the SVM with edit kernel III is better than it appears in Table 4, which is based

on cross validations on a large data set with 13503 samples. On small data sets, the SVM

with edit kernel III can still achieve a very high accuracy, as shown in Table 5. In contrast,

the accuracies of the SVMs with edit kernels I and II drop notably on the small data sets.

For example, on a set of 500 samples, the SVM with edit kernel III based on SCM250 can

achieve an accuracy of 98.6%, while the SVMs with edit kernels I and II could only achieve

86.0% and 92.0%, respectively.

Besides accuracy, it is also important to compare the SVMs with different edit kernels in

16

Table 6: Comparison of the average numbers of support vectors among the edit kernels.

Kernel Average # of SVs

Edit kernel I 2312

Edit kernel II 2316

Edit kernel III, SCM120 319

Edit kernel III, SCM250 230

Edit kernel III, ASCM120 507

Edit kernel III, ASCM250 293

Edit kernel III, PAM250 821

terms of the number of support vectors. It is known that the set of support vectors provides

a “compressed” version of the training data containing all the information necessary to solve

a given classification task [36]. The average number of support vectors of the SVMs with

edit kernels I, II and III on the large set of 13503 samples are listed in Table 6. These

numbers are again based on six-fold cross validations. The SVMs with edit kernel I and

II have about 2300 support vectors, which is pretty small compared with the number of

training samples. Moreover, the SVM with edit kernel III based on SCM250 uses only 230

support vectors. In contrast, the SVM based on SCM120 has 319 support vectors. This

indicates that SCM250 (i.e. the substitution cost matrices over 250 evolutionary time units)

is perhaps more suitable than SCM120 for Pedersen and Nielsen’s data set of vertebrate

mRNAs. Besides, when ASCM250 and ASCM120 are used, the SVMs require 293 and 507

support vectors, respectively. A reason that slightly more support vectors are required here

is probably because some information is lost when we take the average on the probabilities

in an ASCM. The fact that the SVM with PAM250 requires 821 support vectors suggests

again that the log-odds ratio model may not be as suitable as the log probability model for

the edit kernel.

A reason that the edit kernel III uses a small number of support vectors may be that

evolutionary information is already incorporated into the kernel so that the SVM is able to

do prediction with fewer support vectors. It is also known that the expectation of the number

of learned support vectors from a training set of size ℓ, divided by ℓ−1, is an upper bound on

the expected probability of test error [42]. Thus, the very small number of support vectors

required by edit kernel III with SCM250 is an assurance of the SVM’s good performance.

17

Table 7: Comparison of the average numbers of iterations among the edit kernels. Edit

kernel III employs the SCM250 cost matrix.

Average # of iterations

Edit kernel I 105065

Edit kernel II 20208

Edit kernel III 4466

4.3 Computational Issues

The time of training an SVM depends on both the number of iterations and the time com-

plexity of the kernel function. If the sequential minimal optimization (SMO) is employed to

train the SVM, the number of iterations ranges somewhere between linear and quadratic in

the training set size [32], depending on the actual data and kernel function. Table 7 lists the

average numbers of the iterations used in training the SVMs with different edit kernels in the

above six-fold cross validation experiment on the large data set. For all three edit kernels,

the numbers of iterations are (roughly) proportional to the size of training data, although

the SVM with edit kernel I seems to require significantly more iterations.

In the prediction/testing phase, the speed of an SVM depends on both the number of

support vectors and the time complexity of the kernel function. According to the indicator

function (4), the fewer support vectors, the faster the SVM predicts. Since the SVM with

edit kernel III requires the fewest support vectors as shown in Table 6, they are the fastest

in the prediction phase as well.

In both training and testing phases, the time complexity of the kernel function plays

an important role in the speed of an SVM. Many kernel functions, e.g. the polynomial

kernels, can be computed in O(n) time, where n is the length of input vectors (or sequences).

However, our edit kernels have time complexity O(n2) based on dynamic programming. To

improve the time complexity, one may attempt to use some fast algorithm to compute the

edit distance, such as Ukkonen’s algorithm [39]. Ukkonen’s algorithm runs in O(s ∗ n) time

for instances of length n and edit distance s. Ukkonen’s algorithm, however, works only for

the unit cost model. Although Ukkonen’s algorithm has been improved by Wu et al. [43,44]

and Berghel and Roach [6], the improved algorithms still depends on the unit cost model.

Therefore, Ukkonen’s algorithm and its improvements are not suitable for edit kernel III.

Finding a fast (approximate) algorithm for edit kernel III is an interesting future research

topic. For example, we may limit the number of indels, say k, so that we need only compute

the k-diagonal elements in the table of dynamic programming. Such a band-based algorithm

is particularly suitable for computing edit distances on coding regions since indels are usually

18

not frequent in these regions.

4.4 Discussion

The above experimental results show that the SVMs with the edit kernels have a very high

accuracy in predicting TISs that is unmatched by any previous technique. Why do these

algorithms work so well? Below, we try to give some insights from several perspectives.

First of all, our algorithms are based on SVMs. SVMs have a solid foundation in statistical

learning theory and have proven to be more general and powerful than many other learning

techniques in applications. More precisely, the capacity control capability makes SVMs free

of the overfitting problem [40, 41]. SVMs can also been interpreted in the framework of

regularization theory [38], which is a general approach to handle ill-posed problems. The

small number of support vectors used in an SVM also has natural interpretations in the

context of algorithmic complexity and minimum description length (MDL) principle [40].

Although SVMs are general and powerful, they are not a silver bullet. The performance

of an SVM largely depends on the choice of its kernel. In general, the more prior knowledge

is incorporated into the kernel function, the better the performance of the SVM. This is why

the SVM with Salzberg kernel that incorporates local dependency in the sequences performed

better than the SVM with a plain polynomial kernel based on Hamming distance [46]. Our

edit kernel I is based on the edit distance, which is more general than the Hamming distance

and measures the dissimilarity between sequences more accurately. With such a simple

improvement on the kernel, our SVM achieved a notably higher accuracy than the SVM

with Salzberg kernel. Therefore, it is natural to expect that the SVMs with edit kernels

II and III, which take into account more prior knowledge including codon redundancy and

evolutionary costs between nucleotides and amino acids, would perform even better than the

SVM with edit kernel I.

5 An Online Program: TISHunter

Based on the SVM with edit kernel III, we have developed an online program TISHunter 10 for

the prediction of TISs in mRNA sequences. TISHunter uses SCM250 because it has resulted

in the high accuracy, the smallest number of support vectors, and the fastest training time

in the tests done so far. TISHunter works on a “per sequence” basis, i.e. it linearly scans

each input mRNA sequence and predicts a score for every potential start codon ATG. The

ATG codon with the largest predicted value is output as the putative TIS in the sequence if

10The server is publicly accessible at http://bioinfo.ucr.edu/∼hli.

19

Table 8: Six-fold evaluation of TISHunter with the SCM250 cost matrix on Pedersen and

Nielsen’s data set of 3312 sequences. The results of ESTScan, the Salzberg method and the

SVM with Salzberg kernel were obtained by Zien et al. [46].

Method Sample # Error #

ESTScan, closest ATG 2350 729

Salzberg method 3312 1095

SVM, Salzberg kernel 3312 530

TISHunter 3312 13

the score is positive. 11

To evaluate TISHunter, we again divide Pedersen and Nielsen’s original set of 3312 se-

quences into six parts, each of which has 552 sequences. For each part, we train TISHunter

on the other five parts and test it on the missing part. The test results and comparisons

with those of the previous methods are summarized in Table 8. Note that such a comparison

is not fair for ESTScan since it was not trained on these sequences. Also, Zien et al. took

advantage of the fact that input every input mRNA sequence has a TIS, and simply chose

the ATG codon with the largest predicted value as TIS even if the value is negative.

It is amazing that TISHunter made only 13 incorrect predictions totally, while the other

programs made at least 40 times more errors. It turns out that these 13 errors are all

false negatives (i.e. no TISs were predicted in the involved sequences) because none of

the candidate start codons in the sequences received a positive prediction score. If we take

advantage of the fact that these mRNA sequences all have TISs, we could modify TISHunter

to simply output the ATG codon with the largest prediction score as the putative TIS in

each sequence. Interestingly, the modified program would make no errors on this data set.

The reason that the modified program could perform perfectly here is that, when working

on a “per ATG codon” basis, our algorithm usually gives a true start codon a larger score

than those of the true negatives in the same mRNA sequence. Thus, even if a true start

codon is incorrectly predicted as a negative, its prediction score could still be larger than

those of the true negatives in the same sequence and will thus be output as a putative TIS

by the modified program.

11Note that, TISHunter does not assume that the input sequence must have a TIS.

20

6 Prediction on the Human mRNAs

We downloaded all human mRNAs with the status code REVIEWED from NCBI Reference

Sequence (RefSeq) database [33]. These sequences have been reviewed by NCBI staffs or

their collaborators and we may assume that they are of high quality. The dataset contains

8824 sequences. After deleting the sequences whose upstream region to the left of TIS is

less than 10 nucleotides or downstream region is less than 150 nucleotides, we kept 8225

sequences as the experimental dataset. These 8225 sequences have an average length of 2844

and contain 417880 potential ATG start codons. Of the 8225 sequences, there are only 4400

(53.5%) sequences that use the first ATG as TIS. It is very different from Kozak’s claim that

downstream ATGs are used as start codons in less than 10% of her investigated eukaryotic

mRNAs [24].

Because the signal-to-noise ratio (8225/409655 = 2%) is very low, we use a different

experimental setting from what we used on Pedersen and Nielsen’s data. For each ATG

before (and including) the true TIS, we generate a data point that contains at most 30

nucleotides upstream and 270 nucleotides downstream. This length is determined based on

our experiments on small size data. Note that the downstream region is longer than that

used on Pedersen and Nielsen’s eukaryotic mRNAs. With this setting, we generate 20877

data points, of which 8825 are positive. Based on a three-fold cross validation, the sup-

port vector machine achieves 96.7% accuracy with edit kernel III and SCM250 cost matrix.

The specificity, sensitivity, and correlation are 95.7%, 98.0%, and 93.1%, respectively. The

average number of support vectors are 4961, which are 23.8% of the training data. In the

experiment, the parameter C, γ1, and γ2 are set to 32, 0.0625, and 0.015625, respectively.

We also run TISHunter on the human mRNAs. TISHunter works on a per sequence basis

and linearly scans the input mRNA sequence. The first ATG that gets a positive score is

reported as the putative TIS. We use this setting because the training data contains only

the ATGs before (and including) TISs. TISHunter can predict 92.9% of the 8225 true TISs

correctly. Among the erroneously predicted ATGs, we find the following results. In the 584

incorrect predictions, 486 (83.2%) are in the upstream of the true TISs, 98 (16.8%) are in the

downstream, 365 (62.5%) are in the reading frames, and 219 (37.5%) are out of the reading

frames.

Interestingly, we find that, out of the 486 false predictions in the upstream of TISs,

173 (35.6%) contain a stop codon between the wrongly predicted position and the true

start codon. We think that many of these false TISs may contribute to the procedure

reinitiation. As we mentioned before, reinitiation happens when an 80S ribosome translates

the first small open reading frame (upORF) and reaches a stop codon. In the study of human

immunodeficiency virus type 1 mRNAs, Luukkonen et al. found that downstream translation

initiation is inhibited in 50% of the cases by an upORF of 84 nucleotides and should be

21

entirely abrogated by an ORF longer than 165 nucleotides (predicted by extrapolation) [29].

In our 173 cases, 51 (29.5%) and 74 (42.8%) of the false TISs have stop codons in the 84

and 165 nucleotide downstream regions, respectively. Besides, reinitiation in eukaryotes is

most efficient when the upORF terminates at some distance before the start of the next

cistron [23]. The reason is that the 40S ribosomal subunit requires time (distance) to re-

acquire Met-tRNAi·eIF-2, without which the downstream ATG codon cannot be recognized

[18]. According to the study of Luukkonen et al., an intercistronic distance shorter than 37

nucleotides appears to negatively affect initiation frequency at downstream ATGs [29]. In

the 74 false TISs that have stop codons in the 165 nucleotides downstream region, 53 (71.6%)

have the intercistronic distance larger than 37 nucleotides. Further analysis on these 53 false

TISs is in progress.

7 Conclusion

Automating the process of sequence annotations is an important part of the post-sequencing

genomics research. In this paper, we show that a powerful machine learning technique,

SVMs, can effectively find TISs if we carefully incorporate the biological knowledge into the

kernel function. The method proposed in this paper can be extended to the recognition of

other biological signals, e.g. binding sites of regulatory proteins, because one can incorporate

motif information into edit kernels. We hope that further analysis on the learned support

vectors will elucidate the real mechanisms involved in a translation initiation process (e.g.

how much does the ribosome care about a downstream region).

8 Acknowledgement

We would like to thank A.G. Pedersen and H. Nielsen very much for sharing their data, A.

Zien for helpful information, D. Gunopulo for some valuable comments, and N. Cristianini,

J.-P. Vert, K. Tsuda and G. Lanckriet for pointing out an error in the early version of this

paper. This work was partially supported by NSF grants CCR-9988353, ACI-0085910, and

CCR-0309902, and National Key Project for Basic Research (973) grant 2002CB512801.

References

[1] P. K. Agarwal and V. Bafna. Detecting non-adjoining correlations with signals in DNA.

In Proceedings of the 2nd Annual International Conference on Research in Computa-

tional Molecular Biology, pages 1–7, 1998.

22

[2] M. Aizerman, E.Braverman, and L.Rozonoer. Theoretical foundations of the potential

function method in pattern recognition learning. Automation and Remote Control,

25:821–837, 1964.

[3] S. F. Altschul. Amino acid substitution matrices from an information theoretic perspec-

tive. Journal of Molecular Biology, 219(3):555–565, 1991.

[4] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathemat-

ical Society, 68(3):337–404, 1950.

[5] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups.

Springer-Verlag, 1984.

[6] H. Berghel and D. Roach. An extension of Ukkonen’s enhanced dynamic programming

ASM algorithm. ACM Transactions on Information Systems, 14(1):94–106, 1996.

[7] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd edition,

1999.

[8] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA.

Journal of Molecular Biology, 268(1):78–94, 1997.

[9] C. Cortes, P. Haffner, and M. Mohri. Rational kernels. In Advances in Neural Informa-

tion Processing Systems 15, pages 41–56, 2002.

[10] C. Cortes, P. Haffner, and M. Mohri. Positive definite rational kernels. In Proceedings

of 16th Annual Conference on Computational Learning Theory, pages 41–56, 2003.

[11] R. Davuluri, I. Grosse, and M. Q. Zhang. Computational identification of promoters

and first exons in the human genome. Nature Genetics, 29(4):412–417, 2001.

[12] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in

proteins. In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure, volume 5,

pages 345–352, 1978.

[13] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[14] D. Freifelder. Molecular Biology. Jones and Bartlett, Boston, MA, 2nd edition, 1987.

[15] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers, San Francisco, 2000.

23

[16] A. G. Hatzigeorgiou. Translation initiation start prediction in human cDNAs with high

accuracy. Bioinformatics, 18(2):343–350, 2002.

[17] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences of USA, 89(22):10915–10919, 1992.

[18] A. G. Hinnebusch. Translational regulation of yeast GCN4. Journal of Biological Chem-

istry, 272(35):21661–21664, 1997.

[19] C. Iseli, C. V. Jongeneel, and P. Bucher. ESTScan: A program for detecting, evaluating,

and reconstructing potential coding regions in EST sequences. In Proceedings of the 7th

International Conference on Intelligent Systems for Molecular Biology, pages 138–148,

Menlo Park, CA, 1999. AAAI Press.

[20] M. Kimura. A simple method for estimating evolutionary rates of base substitutions

through comparative studies of nucleotide sequences. Journal of Molecular Evolution,

16(2):111–120, 1980.

[21] M. Kozak. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs.

Nucleic Acids Research, 15(20):8125–8148, 1987.

[22] M. Kozak. At least six nucleotides preceding the AUG initiator codon enhance transla-

tion in mammalian cells. Journal of Molecular Biology, 196(4):947–950, 1987.

[23] M. Kozak. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic

ribosomes. Molecular and Cellular Biology, 7(10):3438–3445, 1987.

[24] M. Kozak. The scanning model for translation: An update. Journal of Cell Biology,

108:229–241, 1989.

[25] M. Kozak. Interpreting cDNA sequences: Some insights from studies on translation.

Mamalian Genome, 7(8):563–574, 1996.

[26] M. Kozak. Initiation of translation in prokaryotes and eukaryotes. Gene, 234(2):187–

208, 1999.

[27] V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.

Soviet Physics Daklady, 10:707–710, 1966.

[28] W.-H. Li and D. Graur. Fundamentals of Molecular Evolution. Sinauer Associates,

Sunderland, MA, 1991.

24

[29] B. G. M. Luukkonen, W. Tan, and S. Schwartz. Efficiency of reinitiation of transla-

tion on human immunodeficiency virus type 1 mRNAs is determined by the length of

the upstream open reading frame and by intercistronic distance. Journal of Virology,

69(7):4086–4094, 1995.

[30] D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, N.Y., 2001.

[31] A. G. Pedersen and H. Nielsen. Neural network prediction of translation initiation sites

in eukaryotes: Perspectives for EST and genome analysis. In Proceedings of the 5th

International Conference on Intelligent Systems for Molecular Biology, pages 226–233,

1997.

[32] J. Platt. Fast training of support vector machines using sequential minimal optimization.

In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods

— Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

[33] K. D. Pruitt and D. R. Maglott. Refseq and locuslink: Ncbi gene-centered resources.

Nucleic Acids Research, 29(1):137–140, 2001.

[34] A. A. Salamov, T. Nishikawa, and M. B. Swindells. Assessing protein coding region

integrity in cDNA sequencing projects. Bioinformatics, 14(5):384–390, 1998.

[35] S. L. Salzberg. A method for identifying splice sites and translational start sites in

eukaryotic mRNA. Computer Applications in the Biosciences, 13(4):365–376, 1997.

[36] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997.

[37] P. H. Sellers. On the theory and computation of evolutionary distances. SIAM Journal

on Applied Mathematics, 26(4):787–793, 1974.

[38] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization

method. Soviet Mathematics Doklady, 4:1035–1038, 1963.

[39] E. Ukkonen. Algorithms for approximate string matching. Information and Control,

64:100–118, 1985.

[40] V. N. Vapnik. The Nature of Statistical Learning Thoery. Springer-Verlag, New York,

1995.

[41] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[42] V. N. Vapnik and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow,

1974.

25

[43] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83–91, 1992.

[44] S. Wu, U. Manber, and G. Myers. An O(NP) sequence comparison algorithm. Infor-

mation Processing Letters, 35:317–323, 1990.

[45] H. Yoon and T. F. Donahue. Control of translation initiation in saccharomyces cere-

visiae. Molecular Microbiology, 6(11):1413–1419, 1992.

[46] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering

support vector machine kernels that recognize translation initiation sites. Bioinformat-

ics, 16(9):799–807, 2000.

26

