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Abstract

In pattern recognition, feature extraction techniques are widely employeetitwe the
dimensionality of data and to enhance the discriminatory information. PrincipalpGnent
Analysis (PCA) and Linear Discriminant Analysis (LDA) are two most popliteear dimen-
sionality reduction methods. However, PCA is not very effective for kteaetion of the most
discriminant features and LDA is not stable due tosh®all sample size problenn this pa-
per, we propose some new (linear and nonlinear) feature extracs®d bamaximum margin
criterion (MMC). Geometrically, feature extractors based on MMC maximize the (average)
margin between classes after dimensionality reduction. It is shown that MiiCepresent
class separability better than PCA. As a connection to LDA, we may alsoede from
MMC by incorporating some constraints. By using some other constraintsstablish a new
linear feature extractor that does not suffer from the small sample sib&epn, which is known
to cause serious stability problems for LDA. The kernelized (nonlineamtespart of this lin-
ear feature extractor is also established in the paper. Our extensiegmegpts demonstrate
that the new feature extractors are effective, stable, and efficient.

Keywords: Feature extraction, maximum margin criterion, linear dimtant analysis, small
sample size problem
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1 Introduction

In statistical pattern recognition, high dimensionaldgyai major cause of the practical limitations
of many pattern recognition technologies. Moreover, it b@sn observed that a large number of
features may actually degrade the performance of classifitie number of training samples is
small relative to the number of features [16, 22, 23]. Thet,favhich is referred to as the “peaking
phenomenon”, is caused by the “curse of dimensionality.” ftually, the number of parameters
in a D-dimensional distribution usually goes up much faster tBéh) unless one makes the very
strong assumption that the features are independent. §tanice, given that the features are not
independent, the normal distributions haVéD?) parameters and the binary distributions have
O(2P) parameters [4]. In other words, the complexity of a distiitmuincreases rapidly when the
dimensionality increases. So, very large data would beagkadgeneral to train a classifier well.
It is generally accepted that one needs at least ten timesag training samples per class as the
number of features to obtain well-trained classifiers [7,288. However, the number of samples is
often small due to limitations on sample availability, il&oation, time, and cost. Consequently,
dimensionality reduction is essential not only to engimegapplications but also to the design of
classifiers. In fact, the design of a classifier becomes mehe simple if all patterns in the same
class hold the same feature vector which is different froenfdfature vectors held by patterns from
other classes.

In the past several decades, many dimensionality redutéicimiques have been proposed.
The most well-known feature extraction methods may be RracComponent Analysis (PCA)
and Linear Discriminant Analysis (LDA). PCA, also known as tharhunen-Leve transforma-
tion in communication theory, is given by a linear transfatimn matrixW € R?*¢ minimizing
the mean squared error criterion [17]. In POA, is constituted by the largest eigenvectors (called
principal components) of the sample covariance (or carcglamatrix. The purpose of PCA is to
keep the information in terms of variance as much as posdtylexpanding data on these orthog-
onal principal components, one can obtain the minimal retcaantion error. But the decorrelation
and high measures of statistical significance provided &Yitht few principal components cannot
guarantee the revelation of necessary class structu@mation needed for a proper classifica-
tion. Besides, the fact that the category information assediwith patterns is neglected implies
that PCA may be significantly sub-optimal.

Linear discriminant analysis (also called Fisher’s LinBacriminant) is another popular lin-
ear dimensionality reduction method. In many applicatidti3A has proven to be much more
effective than PCA. Fisher originally introduced LDA for tvetasses [6], while Rao generalized
LDA to handle multi-class cases [21]. LDA is given by a lint@ansformation matrifyv € R”*4
maximizing the so-called Fisher criterion (a kindrRédyleighcoefficient)
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whereS, = 3¢, p;(m,—m)(m,—m)" andS,, = 3_¢_, p;S; are the between-class scatter matrix
and the within-class scatter matrix, respectivelyis the number of classesi; and p; are the
mean vector and priori probability of class, respectivelym =37 | p;m,; is the overall mean
vector;S; is the within-class scatter matrix of classD andd are the dimensionalities of the data
before and after the transformation, respectively; andenotes the trace of a square matrix, i.e.
the sum of the diagonal elements. Besides, the total/midcatter matrix, i.e. the covariance
matrix of all samples regardless of their class assignméntiefined ass; = E[(x — m)(x —
m)’] = S, + S, [9]. To maximize (1), the transformation matr® must be constituted by
the largest eigenvectors 6f,'S,. A major drawback of LDA is that it cannot be applied when
S., is singular due to themall sample size problef@]. The small sample size problem arises
whenever the number of samples is smaller than the dimeadgipof samples. The small sample
size problem occurs frequently in practice, for example f@cognition, cancer classification with
gene expression profiling, and web document classificagion |n the classification and diagnostic
prediction of cancers using gene expression profiling, Xargple, the data have several thousand
features (genes). Due to limitations on sample availgbilitentification, acquisition, time, and
cost, however, the number of samples is usually only sedexzdn [11, 18, 20].

In recent years, many researchers have noticed this praérried to overcome the compu-
tational difficulty with LDA. A simple and direct attempt ie teplaceS,' with the pseudo-inverse
matrix S;) [27]. However, it does not guarantee that Fisher’s critei®still optimized by the
largest eigenvectors &1S,. Another approach is to first reduce the dimensionality \sitime
other feature selection/extraction method and then appk én the dimensionality-reduced data.
For instance, Belhumeuat al. proposed the Fisherface (also called PCA+LDA) method which
first employs PCA to reduce the dimensionality of the featpace ton — ¢, and then applies the
standard LDA to reduce the dimensionalityde- 1, wheren is the number of samples amrds
the number of classes [1]. Note that this method is sub-@btbacause PCA has to keep- 1
principal components in order not to lose information. Heerethe first step of PCA+LDA keeps
only n — ¢ principal components. Such a setting will lose too muchrmigtion if the number of
classes is large.

To handle the singularity problem, it is also popular to adihgular value perturbation 9,
to make it nonsingular [14]. A similar but more systematictimoel is regularized discriminant
analysis (RDA) [8]. In RDA, one tries to obtain more reliabléimsites of the eigenvalues by cor-
recting the eigenvalue distortion in the sample covarianagix with a ridge-type regularization.
Besides, RDA is also a compromise between LDA and QDA (quaddisicriminant analysis),
which allows one to shrink the separate covariances of Q/atds a common covariance as in
LDA. Penalized discriminant analysis (PDA) is another tagmed version of LDA [12, 13]. The
goals of PDA are not only to overcome the small sample sizbleno but also to smooth the co-
efficients of discriminant vectors for better interpretati In PDA,S,, is replaced witts,, + A\Q



and then LDA proceeds as usual, wheres a symmetric and non-negative definite penalty matrix.
The choice of2 depends on the problem. If the data are log-spectra or im&geslefined in such

a way so as to force nearby components of discriminant v@ttope similar. The main problem
with RDA and PDA is that they do not scale well. In applicatiagh as face recognition and
cancer classification with gene expression profiling, tiestisionality of covariance matrices are
often more than ten thousand. It is not practical for RDA andRiprocess such large covariance
matrices, especially when the computing platform is made@s.

Recently, several methods that play with the null spacg ohave been widely investigated.
A well-known null subspace method is the LDA+PCA method [5]. &8, is of full rank, the
LDA+PCA method just calculates the maximum eigenvecto&;d8, to form the transformation
matrix. Otherwise, a two-stage procedure is employedt,Firs data are transformed into the null
spacé/, of S,,. Second, it tries to maximize the between-class scattéy,iwhich is accomplished
by performing PCA on the between-class scatter matriXin Although this method solves the
small sample size problem, it could be sub-optimal becausaximizes the between-class scatter
in the null space o8, instead of the original input space. For example, the perémce of the
LDA+PCA method drops significantly when — ¢ is close to the dimensionalitlp, wheren is
the number of samples ands the number of classes. The reason is that the dimendipiodli
the null spacé/; is very small in this situation, and too much informationastiwhen we try to
extract the discriminant vectors iy,. LDA+PCA also needs to calculate the rankSyf, which
is an ill-defined operation due to floating-point impreamsicAnother problem with LDA+PCA
is that the computational complexity of determining thel splace ofS,, is very high. In [15], a
more efficient null subspace method was proposed, whichhiegesatme accuracy as LDA+PCA in
principle. This method first removes the null spac& gfwhich has been proven to be the common
null space of botls, andS,,, and useless for discrimination. Then, LDA+PCA is perfornmetthe
lower-dimensional projected space. Direct LDA is anothdl space method that discards the null
space ofS, [29]. This is achieved by diagonalizing firS; and then diagonalizin§,,, which is in
the reverse order of conventional simultaneous diagcet#diz procedure [9]. In Direct LDA, one
may also emplo; instead ofS,,,. In this way, Direct LDA is actually equivalent to the PCA+LDA
[29]. Therefore, Direct LDA may be regarded as a “unified PCBALsince there is no separate
PCA step.

Kernel Fisher’s Discriminant (KFD) [19] is a well-known nlarear extension to LDA. The
instability problem is more severe for KFD becaiggin the (nonlinear) feature spacdéis al-
ways singular (the rank d,, is n — ¢). Similar to [14], KFD simply adds a perturbatiqi to
S... However, it is known that an eigenvector could be very gmesio small perturbation if its
corresponding eigenvalue is close to another eigenvaltieecdfame matrix [26]. Besides, itis hard
to determine an optimal theoretically.

In this paper, a simple, efficient, and stable method is pegdo calculate the most dis-



criminant vectors and to avoid the small sample size prolidlased on a new feature extraction
criterion, themaximum margin criterion (MMC)Geometrically, MMC maximizes the (average)
margin between classes. It can be shown that MMC represksts separability better than PCA.
As a connection to Fisher’s criterion, we may also derive Lit?an MMC by incorporating some
constraint. By using some other constraints, we establesiméiwv linear and nonlinear feature ex-
tractors that do not suffer from the small sample size problhich is known to cause serious
stability problems for LDA. Different from LDA+PCA, the neveature extractors based on MMC
maximize the between-class scatter in the input spaceaithsibthe null space d8,,. Hence, it
has a better overall performance than LDA+PCA, as confirmealpgxperimental results.

The rest of the paper is organized as follows. Section 2dloizes the maximum margin cri-
terion for feature extraction. Based on this criterion, ®&cB obtains an optimal linear feature
extractor by solving an eigenvalue problem. Section 4 dedlsnonlinear dimensionality reduc-
tion by kernelizing the above linear feature extractor.t®acs discusses the experimental results
on many different kinds of data. Section 6 presents the cgrars along with some directions for
further research.

2 Maximum Margin Criterion
Suppose that we are given the empirical data

(Xlay1)7~~-;<xn7yn) c X X {C17---7CC}

Here, the domait’ € R is some nonempty set that the pattexpsire taken from. The,’s are
called labels or targets. By studying these samples, we wanedict the label € {C,...,C.}

of some new patterr € X'. In other words, we choosgesuch thatx, y) is in some sense similar
to the training examples. For this purpose, some measucebeemployed to assess similarity or
dissimilarity. We want to keep such similarity/dissimitgrinformation as much as possible after
the dimensionality reductiomg., transformingx from R” to R¢, whered < D.

If some distance metric is used to measure the dissimilamgywould hope that a pattern is
close to those in the same class but far from those in diftelasses. So, a good feature extractor
should maximize the distances between classes after tiefdrenation. Therefore, we may define
the feature extraction criterion as

1 C Cc
J = B) Z Zpipjd(cia Cj) (2)
i=1 j=1

We call (2) the maximum margin criterion (MMC). Itis actualhe summation of all pair interclass
margins.



One may use the distance between mean vectors as the dib&Eneen classese.
d(C;, Cj) = d(m,, my) 3)

wherem; andm; are the mean vectors of the cla&sand the clas§;, respectively. However, (3)
is not suitable since it neglects the scatter of classes Etlee distance between the mean vectors
is large, it is not easy to separate two classes that havarthe $pread and overlap with each other.
By considering the scatter of classes, we define the interdiagance (or margin) as

d(C;,C;) = d(m;, m;) — s(C;) — s(C;) (4)

wheres(C;) is some measure of the scatter of the clgssin statistics, we usually use the gen-
eralized varianceS;| or overall variancer(S;) to measure the scatter of data, whé&es the
covariance matrix of the clags. In this paper, we employ the overall variangéS,) because
it is easy to analyze. The weakness of the overall variantd®aisit ignores covariance structure
altogether. Note that, by employing the overall/geneealizariance, the expression (4) measures
the “average margin” between two classes while the minimueingm is used in support vector
machines (SVMs) [28].

With (4) ands(C;) beingtr(S;), we may decompose (2) into two parts

= % > pipi(d(m; my) —tr(S) — tr(S;)

i=1 j=1
= —ZZplpJ m,m;) — —ZZplpj (tr(S;) +tr(S;))
i=1 j=1 =1 j=1
The second part is easily simplified#(S.,)
= Z szpj tr(S;) +tr(S sztr (Z piSZ) = tr(Sy) (5)
i=1 j=1 i=1
By employing the Euclidean distance, we may also simplifyfitst part totr(S;) as follows

IS pdtm, ) = 1373 i am o am )

=1 j=1 11]1

1 C C
=3 Z sz-pj(mi—m +m — mj)T(mi—m +m —m;)

i=1 j=1

After expanding it, we can simplify the above equatio} {9 , pi(mi—m)T(mi—m) by using the
factd 5 , pj(m —m;) = 0. So

_Zzpzpj m,;, m;) = tr <sz m,—m)(m, m)T> = tr(Sy) (6)

=1 j=1
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Now we obtain
J =tr(Sy — Sy) (7)

Sincetr(S,) measures the overall variance of the class mean vectorgjexdS,) implies that
the class mean vectors scatter in a large space. On the athdr & smaltr(S,,) implies that
every class has a small spread. Thus, a lafgedicates that patterns are close to each other if
they are from the same class but are far from each other ifaheyrom different classes. Thus,
this criterion may represent class separability bettem P@A. Recall that PCA tries to maximize
the total scatterr(S,) after a linear transformation. But the data set with a largéiwiclass
scatter can also have a large total scatter even when it haslalsetween-class scatter because
S; = S, + S,,. Obviously, such data are not easy to classify. For LDA and®JM is clear that
both have a very similar goal. Later, we will discuss the @mtion and difference between them
in detail.

3 Linear Feature Extraction

When performing dimensionality reduction, we want to findiaegr or nonlinear) mapping from
the measurement spadéd to some feature space such that/ is maximized after the transforma-
tion. In this section, we discuss how to find an optimal linfleature extractor. In the next section,
we will generalize it to the nonlinear case.

Consider a linear mappinv € R”*?, whereD andd are the dimensionalities of the data
before and after the transformation, respectively. We didiké to maximize

J(W) = tr(S;¥ —SI)

whereS}" andS}/ are the between- and within-class scatter matrices in dieife spacer, re-
spectively. SincdV is a linear mapping, it is easy to sh&})’ = W7S,W andS!" = W’S,W.
So, we have

J(W) = tr (W"(S,—S,)W) (8)
In this formulation, we have the freedom to multip§y’ by some nonzero constant. Thus, we
additionally require thaW is constituted by the unit vectorse. W = [wy, ws,..., wy| and

w!w;, = 1. This means that we need solve the following constraineitnigdation

d
max ZW%(Sb—Sw)wk

k=1
subjectto wiw, —1=0 k=1,....d

Note that we may also use other constraints instead. Forgrame may requirér (WTSwW) =
1 and then maximizer (WTSbW). It is easy to show that maximizing MMC with such a con-
straint in fact results in LDA. The only difference is thatinvolves a constrained optimization

7



whereas the traditional LDA solves an unconstrained ogation. The motivation for using the
constraintw; w;, = 1is that it allows us to avoid calculating the inverségfand thus the potential
small sample size problem.

To solve the above optimization problem, we may introducagrangian

d
LW, M) =Y Wi (8,=8u)w;, — A(wiwy, — 1) (9)
k=1

with multipliers \,. The LagrangianC has to be maximized with respect }¢ andw;. The
condition that at the stationary point, the derivative€afith respect tow, must vanish

o = ((S,=Sw) — MDwr =0  k=1,...,d (10)

leads to
(Sb—Sw)Wk :)\ka k= 17 ce ,d (11)

which means that th&,’s are the eigenvalues 8f—S,, and thew,’s are the corresponding eigen-

vectors. Thus
Zwk (S,—Su)w, = Z)\kwkwk = Z)\k (12)

Therefore, /(W) is maximized wheW is composed of the firstlargest eigenvectors &, —S,,.
Here, we need not calculate the inverseSef which allows us to avoid the small sample size
problem easily. We may also requiV¥ to be orthonormal, which may help preserve the shape of
the distribution.

In what follows, we discuss how to calculate the eigenveads, — S,, in an efficient way and
to determine the optimal dimensionalityf the feature space. First, we rewrig—S,, = 2S,—S;
sinceS,, = S; — S;. Note that the null space &, is a subspace of that &, since the null space
of S; is the common null space &, andS,, [15]. Thus, we can simultaneously diagonali&ge
andS; to A =diag\y, ..., \.] andI [9]:

PTS,P = A (13)
PTS,P =1 (14)

whereP € RP*", D is the dimensionality of input space, ands the rank ofS,, which is at most
min{n — 1, D}. Besides,A > 0 sinceS, is positive semidefinite. Note that there are at most
¢ — 1 eigenvalues\; > 0,7 = 1,...,r, because the rank &, is ¢ — 1 wherec is the number of
classes. The transformation matkbis given by®® /2%, where® and® are the eigenvalue and
eigenvector matrices &;, and ¥ is the eigenvector matrix d®~/2®7S,®0~'/2 [9]. Clearly,

the columns ofP are the eigenvectors @S, — S; with the corresponding eigenvalugd — 1.
Based on the above equalities, we have the following results:
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e According to the maximum margin criterion, an eigenvectahwn eigenvalué\; — 1 > 0
means that samples in different classes are well separatedverage) in the direction of
this eigenvector. In contrast, samples from differentsgasoverlap in the direction of the
eigenvectors o2\; — 1 < 0.

e Based on Equation (12), we should choose the eigenvectonstisat2\; — 1 > 0 to con-
stitute the mapping matriXv¥ maximizing the maximum margin criterion. Although eigen-
vectors of2)\; — 1 = 0 do not increase the maximum margin criterion, we would Bkié
to employ these eigenvectors for feature extraction becteure extraction is not only to
reduce the dimensionality but also to keep as much infoonats possible. Extending this
argument, we may also employ the eigenvectors with the egees such that\, — 1 are
slightly less than O.

e To calculate the eigenvector matix = ®0©~/?W¥, we use a fast two-step algorithm in
virtue of singular value decomposition (SVD). SVD expresagealn x m matrix A as a
productA = UA:VT, whereA: is a diagonal matrix with decreasing non-negative entries,
andU andV aren x min(n, m) andm x min(n, m) orthonormal column matrices [10].
The columns ofU andV are the eigenvectors A" and AT A, respectively, and the
nonvanishing entries oh: are the square roots of the non-zero eigenvalues Af" and
ATA. Note thatS, is estimated by: > | (x; — m)(x; — m)” and can be expressed in
the formS;, = XX with X = ﬁ[(xl —m),...,(x, —m)]. Thus, we can obtain the
eigenvalue® and the corresponding eigenvectd@®f S, through the SVD oX. Note that
dimensionality ofX is D x n, wheren is the number of samples. Whenis much smaller
than D (i.e., small sample size problem happens), the SVIXadaé much faster than the
eigen decomposition @&,. To obtain the eigenvector matrik of @~ /2®7S,»0~1/2, we
observeS, = MM" with M = [,/p1(m; —m), ..., /p.(m. — m)]. Hence, we can ge¥
through the SVD o®~ /2T M.

e WhenS,, is nonsingular (so i8,), the transformation matri® is also the eigenvector ma-
trix of S; 'S, [9]. In this sense, LDA and MMC are equal because the eigéokeofS; 'S,
andS;'S, have the same discriminatory capability [9]. However, tlyeevalues of5; 'S,
(andS_'S,) are all nonnegative. Thus, all eigenvectors with nonriegaigenvalues are
employed to constitute the mapping matrix of LDA in practids we mentioned before,
however, samples are not well separated in the directioigeheectors whose correspond-
ing eigenvalues o8, — S,, are negative. In principle, MMC can make the samples more
separable than LDA by discarding such eigenvectors. On tter thand, however, MMC
may lose more information by discarding these eigenvectbrexperiments, we observe
that MMC is usually able to achieve similar results as LDA iloaer dimensional discrim-
inant space.



e When the small samples size problem arises, MMC is actuallyvalgnt to LDA+PCA in
general. Recall that LDA+PCA maximiz&8sin the null space 08,,. According to Equation
(12), it is easy to show that, in order to maximiz¢ W’ (S, — S,,)W), the columns oW
have to be in the null space 8f, but not in the null space &, since bothS,, andS, are
positive semidefinite. Thus, MMC and LDA+PCA will be equallietnull space o8, is
large enough to contain the whole column spac&of However, MMC and LDA+PCA
will be different when the number of samples minus the nundferlasses is close to the
dimensionality of input space. In this case, the null spa&: owill be very small and cannot
contain the whole column space®yf. Thus, LDA+PCA may lose too much information and
results in very poor performance. In contrast, MMC worksha whole input space rather
than only in the null space d, and can keep more discriminatory information. Thus,
MMC can achieve better results. Besides, MMC is much simpterraore efficient than
LDA+PCA. Note that LDA+PCA needs to determine the rank and thk space ofS,,,
which is time-consuming. Especially, it is ill-defined tdadate the rank of a matrix due to
floating-point imprecisions.

4 Nonlinear Feature Extraction with Kernel

In this section, we follow the approach of nonlinear SVMs][B8 kernelize the above linear
feature extractor. Thatis, we employ some positive defik@tael to implicitly perform a nonlinear
mapping® to transform the data into a feature spa€gein which the linear feature extraction is
applied. More precisely, we first reformulate the maximunrgmacriterion in terms of only dot-
product(®(x), ®(y)) of input patterns. Then we replace the dot-product by sorséipe definite
kernelk(x,y), e.g. polynomial kernelz, y/)?, Gaussian kernet-l=—4I” etc.

Consider the maximum margin criterion in the feature spéce

d
JHW) =) wil(sy-Si)w,
k=1

whereS} andS? are the between-class scatter matrix and within-classesaattrix in 7, i.e,,

Sy = Yip(mf —m®)(mf — m®)7, 87 = Y7, pST and ST = L3 (@(x)) —
m?)(®(x\”) — m®)” with m® = L5 &(x\"), m® = 37 pm?, andx.” is the pattern

of classC; that has»; samples. Note that the small sample size problem alwaysenagpF be-
cause the feature spagehas very high or even infinite dimensionality. With a polynahkernel

of degreep, for example, the dimensionalit®’ of F is D' = (D+;”1) given aD dimensional
input space. Fob = 256 andp = 4, D’ ~ 10°. Clearly, the small sample size problem cannot be

avoided for such a nonlinear mapping in practice.
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SinceS? andS? have the very high dimensionality, it is not possible to oklte them di-
rectly in practice. To avoid the computation 8f andS?, we notice that eaclw, lies in the
span of®(x; ), (x2), ..., P(x,). Therefore, we can find an expansion oy in the formw, =
oy al(k)¢(xl). Using this expansion and the definitionmaf’, we have

it =3l (13wt 0

Replacing the dot-product by some kernel functi¢r, y) and definingm,), = = >ty k(xi, xg.i)),
we getw! m? = o] m; with (ay); = al(k'). Similarly, we have
_Wk sz _ak szmz_ak
withm = "¢ | p;m;. This meansvy (m — m®) = ag(mi —m) and
d d c
D owiSiwi =) > pi(wi(mf —m®))(wi (m? —m®))”
k=1 k=1 i=1
d c d _
=> ) plof(m; —m)(m; —m) a, =Y of Syay
k=1 i=1 k=1
whereS, = S, p;(m; — m)(im; — m)” .
Similarly, one can simpliffW”S2W. First, we havew! (®(x (’)) m?) = af(kgi) m,) with

(k) = k(x;,x\"). Consideringv] S?w;, = %2;?;1<w£<<1><x§-“>—m?>><w£<<1>< ) —m®))7,
we have

wiSPw, = — Z of (ki — m,) (kgi) —m;) oy,
— Tg. ._ll ,_il KT
= Zak i(e; A ni)(€; - n) KG oy,

1 1 1
:—Za;‘fK e;e; ——elei 1 e +—1 lT)K

nzj ni—-n
jl

1 1

%

1 17K o

nixni ni—n

where(K;);; = k(xhxy)), I, xn; IS then; x n, identity matrix, 1,,, is then;-dimensional vector
of 1's, ande; is the canonical basis vector of dimensions. Thus, we obtain

d d c
W, S, W, = pl—akK (I, __1711177, )K
S wls? S iz Lo o7

k=1 k=1 i=1
d c 1 1 d
§ T § : T 2 TS
k=1 ak (i—l ! i ( o ) e
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whereS,, = i pinKi(T, 1,1215 )K!. So the maximum margin criterion in the feature
spacer is

d
= Z aZ(gb — §w)ak (15)
k=1

Similar to the observations in developing the linear feaextractor based on MMC, one may
obtain that the above criterion is maximized by the largegre/ectors o8, — S,, with constraints
alap = 1,k = 1,...,d. However, it is not appropriate to obtain the mapping matitectly
through the eigen decomposition®f — S,,. According to our previous discussion, the null space
of S? contains important discriminatory information. Howewge lose a very large portion of the
null space ofS? while we work withS,, through the kernel trick. Note that the dimensionality of
NULL (§w) is usually onlyc. But the dimensionality of NULLS?) is much larger or even infinite.
To avoid this problem, we should instead employ the maximuangm criterion in the feature
space as

d
k=1

whereS, = %K( 11,11 K" and(K);; = k(x;, x;) [25]. In this case, we can directly use the
eigenvectors 0?S, — St with the largest eigenvalues to constitute the mappingirbgécause the
null space ofS? is useless for discriminant analysis. As we discussed ifilear case, we may
obtain the mapping matriA = [a, g, . . ., ay] by simultaneously diagonalizir@ ands,,.

5 Experiments

In this section, we compare our methods with LDA, LDA+PCA, &eadhel PCA on several differ-
ent datasets. All the experiments are performed on a Per2id@ and 1G RAM machine. First,
we will compare MMC with LDA on the famous Fisher’s iris dagaswhich has no small sample
size problem. The iris dataset gives the measurements fimeaars of the sepal length and width
and the petal length and width, respectively, of 50 floweosnfreach of 3 species of iris. The
eigenvalues 08, — S,, is 0.97 and—0.06. Since there is only one positive eigenvalue, we use the
corresponding eigenvector to constitute the map matrix W4 For LDA, we use two (i.ec — 1)
eigenvectors as usual. The experimental procedure islag/flAfter feature extraction by MMC

or LDA, we use the nearest centroid method to predict thesadfa new observatior as

C(x) = arg mln Z (x —my))? a7

i.e. the class whose mean vector is closest o the space of discriminant variables. To estimate
the error rates, we randomly split the dataset into thretspara class-proportional manner, of
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Figure 1: Samples from the ORL dataset.

which two parts are used for training and the third part ist keptest. This procedure is repeated
for 200 times and the average error rates of LDA and MMC2a06% and 1.94%, respectively.
This shows that MMC can achieve a competing performance # &&zn though it maps the data
into a lower dimensional discriminant space.

Because the linear methods already achieves very high atesiten the iris dataset, we em-
ploy another dataset, the vehicle dataset from STATLOGh@a#s, to compare kernel MMC and
kernel PCA. The vehicle dataset contains 18 features of 8déusttes of four types of vehicle.
The vehicle may be viewed from one of many different angles.tli@ vehicle dataset, LDA and
MMC achieve a23.84% error rate. In contrast, kernel MMC achieved ®39% error rate. In
this experiment, we employ the normalized polynomial ke k(xkg\y/)m wherek(-, -) is the
polynomial kernel. The degree of the polynomial kernel ists€. For LDA, MMC, and kernel
MMC, we map the data into a three-dimensional (e~ 1) discriminant space. We also apply
kernel PCA [25] on this dataset. We use the eigenvectors wgdnealues larger thaim01 to con-
stitute the mapping matrix. The number of such eigenvecsatependent on the selected training
data. With the same kernel as the one employed by kernel MMiZe tire usually around 14 such
eigenvectors. After feature extraction by kernel PCA, a suppector machine is employed to
classify samples as Sgkkopf et al. did in [25]. The average error rate 28.71%, which is only
slightly better than those of the linear methods LDA and MMC.

In what follows, we will compare MMC with LDA+PCA on the smalisiple size datasets. The
original LDA+PCA [5] needs to determine the null spac&gf which is very time consuming. So,
a pixel grouping method is applied before LDA+PCA in [5]Huanget al. improved LDA+PCA
by first removing the null space 8 firstly. The algorithm of Huangt al. has the same recognition
accuracy as the original LDA+PCA but is more (both time and wenefficient and can be
applied to the original (unresized) datasets directly. SThwe compare MMC with the algorithm

1In the previous conference version of this paper, we simgsjzed the images to a smaller size

13



Table 1: The averages and standard deviations of erroroatdee ORL dataset. The first column
is the number of samples per class for training. The kernelQviwvid kernel PCA use Gaussian
kernel withy = 0.0075 and~y = 0.0025, respectively. MMC, LDA+PCA, and kernel MMC reduce
the dimensionality ta: — 1. Kernel PCA uses the largest eigenvectors that presgiyeof the
variance.

Training samples MMC LDA+PCA kernel MMC kernel PCA
3 8.90 £ 2.37 8.90 £ 2.37 9.13 £2.39 12.17 £ 2.42
4 5.71 + 1.47 5.71 £ 1.47 5.82+1.64 9.53 £1.95
5 3.89 +1.43 3.89+1.43 3.82 £1.33 9.00 £ 2.16
6 3.12 4+ 1.40 3.124+1.40 291 £1.53 9.19 £1.88
7 2.20£1.38 2.20£1.38 1.954+1.31 9.93 £ 2.64

of Huanget al. instead of the original LDA+PCA here. In the experiment, wedithe ORL face
dataset [24], which had been used to investigate the snmalplsasize problem in [15, 29, 30].
Figure 1 depicts some sample images of a typical subset i@RIle dataset. The ORL dataset
consists of 10 face images from 40 subjects for a total of Atdles, with some variation in pose,
facial expression and details. The resolution of the imagdd2 x 92, with 256 gray-levels.
Before the experiments, we scale the pixel gray level to thge&, 1]. We conduct a series of
experiments on ORL dataset and compared our results witle thiatsined using LDA+PCA and
kernel PCA. The average error rates of 50 runs are shown ie Taldls we discussed before, MMC
and LDA+PCA (the algorithm of Huanet al) achieve the same error ratéBesides, we observe
that kernel MMC just achieves similar results as linear MM@l 4 DA+PCA although it has a
significantly better performance than kernel PCA. The reastmat the input space has already a
very high dimensionality (10304) so that the samples aréesea and are easy to classify. With
the kernel trick, we just map the data into a higher dimeraigpace. Thus, it does not improve
the performance. When the dimensionality of the input spasenall, the kernel methods have the
superiority as shown on the vehicle dataset and in the ng@drarent.

Now we will show that our method performs much better than HBEA whenn —c is close to
the dimensionalityD. Because the amount of training data is limited, we resizetlges of ORL
to 168 dimensions to create such a situation. We randonggsile images per person for training
and use the remaining images for test. For such a setting; = 200 — 40 = 160, which is close
to 168. Thus, the dimensionality of the null spaceSyf is around168 — 160 = 8, which is very
small with respect te — 1 = 39. So, the performance of LDA+PCA (both the original algorithm

2Although MMC, the algorithm of Huangt al., and the original LDA+PCA have the same discriminatory eapa
bility in principle, we observe that MMC and the algorithmtdfianget al. often obtain better results than the original
LDA+PCA in practice. The reason may be that, when the oridiBs+PCA calculates the rank and the null space
of S,,, the cumulative error due to floating-point imprecisionsignificant sinces,, is usually huge.
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and the one of Huangt al) will drop significantly because it loses a lot of informatiwhen it
maximizes the between-class scatter in this small nullespée fact, LDA+PCA has #4.84%
average error rate. On the other hand, our method tries tonmzexthe between-class scatter in
the whole input space and achieves a much better error rate9f. Besides, kernel MMC and
kernel PCA could obtain the error rates©29% and7.91% with Gaussian kernelsy(= 0.058
for kernel MMC andy = 0.019 for kernel PCA), respectively. This confirms our above argoime
that kernel methods can obtain better results than line#inads when the dimensionality of input
space is relatively small.

To demonstrate that our method is effective not only for femsgnition but also for other
applications, we apply it to cancer classification with gerpression data. Accurate diagnosis
of human cancer is essential in cancer treatment. Recemyadvances in microarray technol-
ogy enable us to simultaneously observe the expressiotslefenany thousands of genes on
the transcription level. In principle, tumor gene expressprofiles can serve as molecular fin-
gerprints for cancer (phenotype) classification. Reseasdbadieve that gene expression profiling
could be a precise, objective, and systematic approaclafarer diagnosis [11, 18]. In this exper-
iment, we apply our method on a brain cancer gene expressiaset, which is the dataset A in
[20]. This dataset contains 42 samples of 10 medulloblaaspd0 malignant gliomas, 10 atypical
teratoid/rhabdoid tumors (AT/RTs), 8 primitive neuroatgamal tumors (PNETS), and 4 normal
cerebella. The brain dataset contains the expression af §&8es (i.e. features). Clearly, itis a
typical small sample size problem. On this dataset, MMC arddéd MMC achievel 7.54% and
18.31% average error rates (based on 50 runs), where kernel MMCaograpgbaussian kernel with
~ = 0.00005. In contrast, kernel PCA obtains3a2.31% error rate with the same kernel. We also
run the random forest method [3] on this dataset. The randwasf algorithm is a state-of-art
classification method that grows many classification trée<lassify a new sample, the final pre-
diction is voted by all the trees in the forest. Because thdaanforest algorithm implicitly selects
features (i.e. dimensionality reduction) when growingassilfication tree, we would like to com-
pare our method with it. On the brain cancer dataset, theorarfdrest algorithm obtains28.08%
error rate, which is significantly higher than those of outhoes. It is another evidence that our
methods are able to extract the most discriminatory inféionalamong the methods compared
above) for classification.

6 Conclusion

In pattern recognition, feature extraction techniquesadely employed to reduce the dimension-
ality of data and to enhance the discriminatory informatiorthis paper, we have proposed some
linear and nonlinear feature extractors based on the mawimargin criterion. The new methods
can effectively extract the most discriminatory featured do not suffer from the small sample
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size problem. The experimental results show that the newadstare effective and robust. In
practice, the proposed nonlinear feature extractor coelsldav when the dataset is large. Itis an
interesting topic to develop a fast algorithm for the pragmbeonlinear feature extractor.
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