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Abstract

In pattern recognition, feature extraction techniques are widely employed toreduce the

dimensionality of data and to enhance the discriminatory information. Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA) are two most popular linear dimen-

sionality reduction methods. However, PCA is not very effective for the extraction of the most

discriminant features and LDA is not stable due to thesmall sample size problem. In this pa-

per, we propose some new (linear and nonlinear) feature extractors based onmaximum margin

criterion (MMC). Geometrically, feature extractors based on MMC maximize the (average)

margin between classes after dimensionality reduction. It is shown that MMC can represent

class separability better than PCA. As a connection to LDA, we may also derive LDA from

MMC by incorporating some constraints. By using some other constraints, weestablish a new

linear feature extractor that does not suffer from the small sample size problem, which is known

to cause serious stability problems for LDA. The kernelized (nonlinear) counterpart of this lin-

ear feature extractor is also established in the paper. Our extensive experiments demonstrate

that the new feature extractors are effective, stable, and efficient.

Keywords: Feature extraction, maximum margin criterion, linear discriminant analysis, small

sample size problem
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1 Introduction

In statistical pattern recognition, high dimensionality is a major cause of the practical limitations

of many pattern recognition technologies. Moreover, it hasbeen observed that a large number of

features may actually degrade the performance of classifiers if the number of training samples is

small relative to the number of features [16, 22, 23]. This fact, which is referred to as the “peaking

phenomenon”, is caused by the “curse of dimensionality” [2]. Actually, the number of parameters

in aD-dimensional distribution usually goes up much faster thanO(D) unless one makes the very

strong assumption that the features are independent. For instance, given that the features are not

independent, the normal distributions haveO(D2) parameters and the binary distributions have

O(2D) parameters [4]. In other words, the complexity of a distribution increases rapidly when the

dimensionality increases. So, very large data would be needed in general to train a classifier well.

It is generally accepted that one needs at least ten times as many training samples per class as the

number of features to obtain well-trained classifiers [7, 16, 22]. However, the number of samples is

often small due to limitations on sample availability, identification, time, and cost. Consequently,

dimensionality reduction is essential not only to engineering applications but also to the design of

classifiers. In fact, the design of a classifier becomes extremely simple if all patterns in the same

class hold the same feature vector which is different from the feature vectors held by patterns from

other classes.

In the past several decades, many dimensionality reductiontechniques have been proposed.

The most well-known feature extraction methods may be Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA). PCA, also known as the Karhunen-Lòeve transforma-

tion in communication theory, is given by a linear transformation matrixW ∈ RD×d minimizing

the mean squared error criterion [17]. In PCA,W is constituted by the largest eigenvectors (called

principal components) of the sample covariance (or correlation) matrix. The purpose of PCA is to

keep the information in terms of variance as much as possible. By expanding data on these orthog-

onal principal components, one can obtain the minimal reconstruction error. But the decorrelation

and high measures of statistical significance provided by the first few principal components cannot

guarantee the revelation of necessary class structural information needed for a proper classifica-

tion. Besides, the fact that the category information associated with patterns is neglected implies

that PCA may be significantly sub-optimal.

Linear discriminant analysis (also called Fisher’s LinearDiscriminant) is another popular lin-

ear dimensionality reduction method. In many applications, LDA has proven to be much more

effective than PCA. Fisher originally introduced LDA for twoclasses [6], while Rao generalized

LDA to handle multi-class cases [21]. LDA is given by a lineartransformation matrixW ∈ RD×d

maximizing the so-called Fisher criterion (a kind ofRayleighcoefficient)

JF (W) = tr

(
WTSbW

WTSwW

)
(1)
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whereSb =
∑c

i=1 pi(mi−m)(mi−m)T andSw =
∑c

i=1 piSi are the between-class scatter matrix

and the within-class scatter matrix, respectively;c is the number of classes;mi andpi are the

mean vector anda priori probability of classi, respectively;m =
∑c

i=1 pimi is the overall mean

vector;Si is the within-class scatter matrix of classi; D andd are the dimensionalities of the data

before and after the transformation, respectively; andtr denotes the trace of a square matrix, i.e.

the sum of the diagonal elements. Besides, the total/mixturescatter matrix, i.e. the covariance

matrix of all samples regardless of their class assignments, is defined asSt = E[(x − m)(x −
m)T ] = Sw + Sb [9]. To maximize (1), the transformation matrixW must be constituted by

the largest eigenvectors ofS−1
w Sb. A major drawback of LDA is that it cannot be applied when

Sw is singular due to thesmall sample size problem[9]. The small sample size problem arises

whenever the number of samples is smaller than the dimensionality of samples. The small sample

size problem occurs frequently in practice, for example face recognition, cancer classification with

gene expression profiling, and web document classification,etc. In the classification and diagnostic

prediction of cancers using gene expression profiling, for example, the data have several thousand

features (genes). Due to limitations on sample availability, identification, acquisition, time, and

cost, however, the number of samples is usually only severaldozen [11, 18, 20].

In recent years, many researchers have noticed this problemand tried to overcome the compu-

tational difficulty with LDA. A simple and direct attempt is to replaceS−1
w with the pseudo-inverse

matrix S+
w [27]. However, it does not guarantee that Fisher’s criterion is still optimized by the

largest eigenvectors ofS+
wSb. Another approach is to first reduce the dimensionality withsome

other feature selection/extraction method and then apply LDA on the dimensionality-reduced data.

For instance, Belhumeuret al. proposed the Fisherface (also called PCA+LDA) method which

first employs PCA to reduce the dimensionality of the feature space ton − c, and then applies the

standard LDA to reduce the dimensionality toc − 1, wheren is the number of samples andc is

the number of classes [1]. Note that this method is sub-optimal because PCA has to keepn − 1

principal components in order not to lose information. However, the first step of PCA+LDA keeps

only n − c principal components. Such a setting will lose too much information if the number of

classes is large.

To handle the singularity problem, it is also popular to add asingular value perturbation toSw

to make it nonsingular [14]. A similar but more systematic method is regularized discriminant

analysis (RDA) [8]. In RDA, one tries to obtain more reliable estimates of the eigenvalues by cor-

recting the eigenvalue distortion in the sample covariancematrix with a ridge-type regularization.

Besides, RDA is also a compromise between LDA and QDA (quadratic discriminant analysis),

which allows one to shrink the separate covariances of QDA towards a common covariance as in

LDA. Penalized discriminant analysis (PDA) is another regularized version of LDA [12, 13]. The

goals of PDA are not only to overcome the small sample size problem but also to smooth the co-

efficients of discriminant vectors for better interpretation. In PDA,Sw is replaced withSw + λΩ
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and then LDA proceeds as usual, whereΩ is a symmetric and non-negative definite penalty matrix.

The choice ofΩ depends on the problem. If the data are log-spectra or images, Ω is defined in such

a way so as to force nearby components of discriminant vectors to be similar. The main problem

with RDA and PDA is that they do not scale well. In applicationssuch as face recognition and

cancer classification with gene expression profiling, the dimensionality of covariance matrices are

often more than ten thousand. It is not practical for RDA and PDA to process such large covariance

matrices, especially when the computing platform is made ofPCs.

Recently, several methods that play with the null space ofSw have been widely investigated.

A well-known null subspace method is the LDA+PCA method [5]. WhenSw is of full rank, the

LDA+PCA method just calculates the maximum eigenvectors ofS−1
t Sb to form the transformation

matrix. Otherwise, a two-stage procedure is employed. First, the data are transformed into the null

spaceV0 of Sw. Second, it tries to maximize the between-class scatter inV0, which is accomplished

by performing PCA on the between-class scatter matrix inV0. Although this method solves the

small sample size problem, it could be sub-optimal because it maximizes the between-class scatter

in the null space ofSw instead of the original input space. For example, the performance of the

LDA+PCA method drops significantly whenn − c is close to the dimensionalityD, wheren is

the number of samples andc is the number of classes. The reason is that the dimensionality of

the null spaceV0 is very small in this situation, and too much information is lost when we try to

extract the discriminant vectors inV0. LDA+PCA also needs to calculate the rank ofSw, which

is an ill-defined operation due to floating-point imprecision. Another problem with LDA+PCA

is that the computational complexity of determining the null space ofSw is very high. In [15], a

more efficient null subspace method was proposed, which has the same accuracy as LDA+PCA in

principle. This method first removes the null space ofSt, which has been proven to be the common

null space of bothSb andSw, and useless for discrimination. Then, LDA+PCA is performedin the

lower-dimensional projected space. Direct LDA is another null space method that discards the null

space ofSb [29]. This is achieved by diagonalizing firstSb and then diagonalizingSw, which is in

the reverse order of conventional simultaneous diagonalization procedure [9]. In Direct LDA, one

may also employSt instead ofSw. In this way, Direct LDA is actually equivalent to the PCA+LDA

[29]. Therefore, Direct LDA may be regarded as a “unified PCA+LDA” since there is no separate

PCA step.

Kernel Fisher’s Discriminant (KFD) [19] is a well-known nonlinear extension to LDA. The

instability problem is more severe for KFD becauseSw in the (nonlinear) feature spaceF is al-

ways singular (the rank ofSw is n − c). Similar to [14], KFD simply adds a perturbationµI to

Sw. However, it is known that an eigenvector could be very sensitive to small perturbation if its

corresponding eigenvalue is close to another eigenvalue ofthe same matrix [26]. Besides, it is hard

to determine an optimalµ theoretically.

In this paper, a simple, efficient, and stable method is proposed to calculate the most dis-
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criminant vectors and to avoid the small sample size problembased on a new feature extraction

criterion, themaximum margin criterion (MMC). Geometrically, MMC maximizes the (average)

margin between classes. It can be shown that MMC represents class separability better than PCA.

As a connection to Fisher’s criterion, we may also derive LDAfrom MMC by incorporating some

constraint. By using some other constraints, we establish the new linear and nonlinear feature ex-

tractors that do not suffer from the small sample size problem, which is known to cause serious

stability problems for LDA. Different from LDA+PCA, the new feature extractors based on MMC

maximize the between-class scatter in the input space instead of the null space ofSw. Hence, it

has a better overall performance than LDA+PCA, as confirmed byour experimental results.

The rest of the paper is organized as follows. Section 2 introduces the maximum margin cri-

terion for feature extraction. Based on this criterion, Section 3 obtains an optimal linear feature

extractor by solving an eigenvalue problem. Section 4 dealswith nonlinear dimensionality reduc-

tion by kernelizing the above linear feature extractor. Section 5 discusses the experimental results

on many different kinds of data. Section 6 presents the conclusions along with some directions for

further research.

2 Maximum Margin Criterion

Suppose that we are given the empirical data

(x1, y1), . . . , (xn, yn) ∈ X × {C1, . . . , Cc}

Here, the domainX ∈ RD is some nonempty set that the patternsxi are taken from. Theyi’s are

called labels or targets. By studying these samples, we want to predict the labely ∈ {C1, . . . , Cc}
of some new patternx ∈ X . In other words, we choosey such that(x, y) is in some sense similar

to the training examples. For this purpose, some measure need be employed to assess similarity or

dissimilarity. We want to keep such similarity/dissimilarity information as much as possible after

the dimensionality reduction,i.e., transformingx from RD toRd, whered ≪ D.

If some distance metric is used to measure the dissimilarity, we would hope that a pattern is

close to those in the same class but far from those in different classes. So, a good feature extractor

should maximize the distances between classes after the transformation. Therefore, we may define

the feature extraction criterion as

J =
1

2

c∑

i=1

c∑

j=1

pipjd(Ci, Cj) (2)

We call (2) the maximum margin criterion (MMC). It is actuallythe summation of all pair interclass

margins.

5



One may use the distance between mean vectors as the distancebetween classes,i.e.

d(Ci, Cj) = d(mi,mj) (3)

wheremi andmj are the mean vectors of the classCi and the classCj, respectively. However, (3)

is not suitable since it neglects the scatter of classes. Even if the distance between the mean vectors

is large, it is not easy to separate two classes that have the large spread and overlap with each other.

By considering the scatter of classes, we define the interclass distance (or margin) as

d(Ci, Cj) = d(mi,mj) − s(Ci) − s(Cj) (4)

wheres(Ci) is some measure of the scatter of the classCi. In statistics, we usually use the gen-

eralized variance|Si| or overall variancetr(Si) to measure the scatter of data, whereSi is the

covariance matrix of the classCi. In this paper, we employ the overall variancetr(Si) because

it is easy to analyze. The weakness of the overall variance isthat it ignores covariance structure

altogether. Note that, by employing the overall/generalized variance, the expression (4) measures

the “average margin” between two classes while the minimum margin is used in support vector

machines (SVMs) [28].

With (4) ands(Ci) beingtr(Si), we may decompose (2) into two parts

J =
1

2

c∑

i=1

c∑

j=1

pipj(d(mi,mj) − tr(Si) − tr(Sj))

=
1

2

c∑

i=1

c∑

j=1

pipjd(mi,mj) −
1

2

c∑

i=1

c∑

j=1

pipj(tr(Si) + tr(Sj))

The second part is easily simplified totr(Sw)

1

2

c∑

i=1

c∑

j=1

pipj(tr(Si) + tr(Sj)) =
c∑

i=1

pitr(Si) = tr

(
c∑

i=1

piSi

)
= tr(Sw) (5)

By employing the Euclidean distance, we may also simplify thefirst part totr(Sb) as follows

1

2

c∑

i=1

c∑

j=1

pipjd(mi,mj) =
1

2

c∑

i=1

c∑

j=1

pipj(mi−mj)
T (mi−mj)

=
1

2

c∑

i=1

c∑

j=1

pipj(mi−m + m − mj)
T (mi−m + m − mj)

After expanding it, we can simplify the above equation to
∑c

i=1 pi(mi−m)T (mi−m) by using the

fact
∑c

j=1 pj(m − mj) = 0. So

1

2

c∑

i=1

c∑

j=1

pipjd(mi,mj) = tr

(
c∑

i=1

pi(mi−m)(mi−m)T

)
= tr(Sb) (6)
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Now we obtain

J = tr(Sb − Sw) (7)

Sincetr(Sb) measures the overall variance of the class mean vectors, a large tr(Sb) implies that

the class mean vectors scatter in a large space. On the other hand, a smalltr(Sw) implies that

every class has a small spread. Thus, a largeJ indicates that patterns are close to each other if

they are from the same class but are far from each other if theyare from different classes. Thus,

this criterion may represent class separability better than PCA. Recall that PCA tries to maximize

the total scattertr(St) after a linear transformation. But the data set with a large within-class

scatter can also have a large total scatter even when it has a small between-class scatter because

St = Sb + Sw. Obviously, such data are not easy to classify. For LDA and MMC, it is clear that

both have a very similar goal. Later, we will discuss the connection and difference between them

in detail.

3 Linear Feature Extraction

When performing dimensionality reduction, we want to find a (linear or nonlinear) mapping from

the measurement spaceM to some feature spaceF such thatJ is maximized after the transforma-

tion. In this section, we discuss how to find an optimal linearfeature extractor. In the next section,

we will generalize it to the nonlinear case.

Consider a linear mappingW ∈ RD×d , whereD andd are the dimensionalities of the data

before and after the transformation, respectively. We would like to maximize

J(W) = tr(SW
b −SW

w )

whereSW
b andSW

w are the between- and within-class scatter matrices in the feature spaceF , re-

spectively. SinceW is a linear mapping, it is easy to showSW
b = WTSbW andSW

w = WTSwW.

So, we have

J(W) = tr
(
WT (Sb−Sw)W

)
(8)

In this formulation, we have the freedom to multiplyW by some nonzero constant. Thus, we

additionally require thatW is constituted by the unit vectors,i.e. W = [w1,w2, . . . ,wd] and

wT
k wk = 1. This means that we need solve the following constrained optimization

max
d∑

k=1

wT
k (Sb−Sw)wk

subject to wT
k wk − 1 = 0 k = 1, . . . , d

Note that we may also use other constraints instead. For example, we may requiretr
(
WTSwW

)
=

1 and then maximizetr
(
WTSbW

)
. It is easy to show that maximizing MMC with such a con-

straint in fact results in LDA. The only difference is that itinvolves a constrained optimization
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whereas the traditional LDA solves an unconstrained optimization. The motivation for using the

constraintwT
k wk = 1 is that it allows us to avoid calculating the inverse ofSw and thus the potential

small sample size problem.

To solve the above optimization problem, we may introduce a Lagrangian

L(wk, λk) =
d∑

k=1

wT
k (Sb−Sw)wk − λk(w

T
k wk − 1) (9)

with multipliers λk. The LagrangianL has to be maximized with respect toλk andwk. The

condition that at the stationary point, the derivatives ofL with respect towk must vanish

∂L(wk, λk)

∂wk

= ((Sb−Sw) − λkI)wk = 0 k = 1, . . . , d (10)

leads to

(Sb−Sw)wk =λkwk k = 1, . . . , d (11)

which means that theλk’s are the eigenvalues ofSb−Sw and thewk’s are the corresponding eigen-

vectors. Thus

J(W) =
d∑

k=1

wT
k (Sb−Sw)wk =

d∑

k=1

λkw
T
k wk =

d∑

k=1

λk (12)

Therefore,J(W) is maximized whenW is composed of the firstd largest eigenvectors ofSb−Sw.

Here, we need not calculate the inverse ofSw, which allows us to avoid the small sample size

problem easily. We may also requireW to be orthonormal, which may help preserve the shape of

the distribution.

In what follows, we discuss how to calculate the eigenvectors ofSb−Sw in an efficient way and

to determine the optimal dimensionalityd of the feature space. First, we rewriteSb−Sw = 2Sb−St

sinceSw = St − Sb. Note that the null space ofSt is a subspace of that ofSb since the null space

of St is the common null space ofSb andSw [15]. Thus, we can simultaneously diagonalizeSb

andSt to Λ = diag[λ1, . . . , λr] andI [9]:

PTSbP = Λ (13)

PTStP = I (14)

whereP ∈ RD×r, D is the dimensionality of input space, andr is the rank ofSt, which is at most

min{n − 1, D}. Besides,Λ ≥ 0 sinceSb is positive semidefinite. Note that there are at most

c − 1 eigenvaluesλi > 0, i = 1, . . . , r, because the rank ofSb is c − 1 wherec is the number of

classes. The transformation matrixP is given byΦΘ−1/2Ψ, whereΘ andΦ are the eigenvalue and

eigenvector matrices ofSt, andΨ is the eigenvector matrix ofΘ−1/2ΦTSbΦΘ−1/2 [9]. Clearly,

the columns ofP are the eigenvectors of2Sb − St with the corresponding eigenvalues2Λ − I.

Based on the above equalities, we have the following results:
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• According to the maximum margin criterion, an eigenvector with an eigenvalue2λi − 1 ≥ 0

means that samples in different classes are well separated (on average) in the direction of

this eigenvector. In contrast, samples from different classes overlap in the direction of the

eigenvectors of2λi − 1 < 0.

• Based on Equation (12), we should choose the eigenvectors such that2λi − 1 ≥ 0 to con-

stitute the mapping matrixW maximizing the maximum margin criterion. Although eigen-

vectors of2λi − 1 = 0 do not increase the maximum margin criterion, we would stilllike

to employ these eigenvectors for feature extraction because feature extraction is not only to

reduce the dimensionality but also to keep as much information as possible. Extending this

argument, we may also employ the eigenvectors with the eigenvalues such that2λi − 1 are

slightly less than 0.

• To calculate the eigenvector matrixP = ΦΘ−1/2Ψ, we use a fast two-step algorithm in

virtue of singular value decomposition (SVD). SVD expresses a realn × m matrix A as a

productA = UΛ
1

2VT , whereΛ
1

2 is a diagonal matrix with decreasing non-negative entries,

andU andV aren × min(n,m) andm × min(n,m) orthonormal column matrices [10].

The columns ofU andV are the eigenvectors ofAAT andATA, respectively, and the

nonvanishing entries ofΛ
1

2 are the square roots of the non-zero eigenvalues ofAAT and

ATA. Note thatSt is estimated by1
n

∑n
i=1(xi − m)(xi − m)T and can be expressed in

the formSt = XXT with X = 1√
n
[(x1 − m), . . . , (xn − m)]. Thus, we can obtain the

eigenvaluesΘ and the corresponding eigenvectorsΦ of St through the SVD ofX. Note that

dimensionality ofX is D × n, wheren is the number of samples. Whenn is much smaller

thanD (i.e., small sample size problem happens), the SVD ofX is much faster than the

eigen decomposition ofSt. To obtain the eigenvector matrixΨ of Θ−1/2ΦTSbΦΘ−1/2, we

observeSb = MMT with M = [
√

p1(m1 − m), . . . ,
√

pc(mc − m)]. Hence, we can getΨ

through the SVD ofΘ−1/2ΦTM.

• WhenSw is nonsingular (so isSt), the transformation matrixP is also the eigenvector ma-

trix of S−1
t Sb [9]. In this sense, LDA and MMC are equal because the eigenvectors ofS−1

t Sb

andS−1
w Sb have the same discriminatory capability [9]. However, the eigenvalues ofS−1

t Sb

(andS−1
w Sb) are all nonnegative. Thus, all eigenvectors with nonnegative eigenvalues are

employed to constitute the mapping matrix of LDA in practice. As we mentioned before,

however, samples are not well separated in the direction of eigenvectors whose correspond-

ing eigenvalues ofSb − Sw are negative. In principle, MMC can make the samples more

separable than LDA by discarding such eigenvectors. On the other hand, however, MMC

may lose more information by discarding these eigenvectors. In experiments, we observe

that MMC is usually able to achieve similar results as LDA in alower dimensional discrim-

inant space.

9



• When the small samples size problem arises, MMC is actually equivalent to LDA+PCA in

general. Recall that LDA+PCA maximizesSb in the null space ofSw. According to Equation

(12), it is easy to show that, in order to maximizetr(WT (Sb − Sw)W), the columns ofW

have to be in the null space ofSw but not in the null space ofSb since bothSw andSb are

positive semidefinite. Thus, MMC and LDA+PCA will be equal if the null space ofSw is

large enough to contain the whole column space ofSb. However, MMC and LDA+PCA

will be different when the number of samples minus the numberof classes is close to the

dimensionality of input space. In this case, the null space of Sw will be very small and cannot

contain the whole column space ofSb. Thus, LDA+PCA may lose too much information and

results in very poor performance. In contrast, MMC works in the whole input space rather

than only in the null space ofSw and can keep more discriminatory information. Thus,

MMC can achieve better results. Besides, MMC is much simpler and more efficient than

LDA+PCA. Note that LDA+PCA needs to determine the rank and the null space ofSw,

which is time-consuming. Especially, it is ill-defined to calculate the rank of a matrix due to

floating-point imprecisions.

4 Nonlinear Feature Extraction with Kernel

In this section, we follow the approach of nonlinear SVMs [28] to kernelize the above linear

feature extractor. That is, we employ some positive definitekernel to implicitly perform a nonlinear

mappingΦ to transform the data into a feature spaceF , in which the linear feature extraction is

applied. More precisely, we first reformulate the maximum margin criterion in terms of only dot-

product〈Φ(x), Φ(y)〉 of input patterns. Then we replace the dot-product by some positive definite

kernelk(x,y), e.g.polynomial kernel〈x, y〉p, Gaussian kernele−γ‖x−y‖2

, etc.

Consider the maximum margin criterion in the feature spaceF

JΦ(W) =
d∑

k=1

wT
k (SΦ

b −SΦ
w)wk

whereSΦ
b andSΦ

w are the between-class scatter matrix and within-class scatter matrix inF , i.e.,

SΦ
b =

∑c
i=1 pi(m

Φ
i − mΦ)(mΦ

i − mΦ)T , SΦ
w =

∑c
i=1 piS

Φ
i and SΦ

i = 1
ni

∑ni

j=1(Φ(x(i)
j ) −

mΦ
i )(Φ(x(i)

j ) − mΦ
i )T with mΦ

i = 1
ni

∑ni

j=1 Φ(x(i)
j ), mΦ =

∑c
i=1 pim

Φ
i , andx

(i)
j is the pattern

of classCi that hasni samples. Note that the small sample size problem always happens inF be-

cause the feature spaceF has very high or even infinite dimensionality. With a polynomial kernel

of degreep, for example, the dimensionalityD′ of F is D′ =
(

D+p−1
p

)
given aD dimensional

input space. ForD = 256 andp = 4, D′ ≈ 109. Clearly, the small sample size problem cannot be

avoided for such a nonlinear mapping in practice.
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SinceSΦ
b andSΦ

w have the very high dimensionality, it is not possible to calculate them di-

rectly in practice. To avoid the computation ofSΦ
b andSΦ

w, we notice that eachwk lies in the

span ofΦ(x1), Φ(x2), . . . , Φ(xn). Therefore, we can find an expansion forwk in the formwk =∑n
l=1 α

(k)
l Φ(xl). Using this expansion and the definition ofmΦ

i , we have

wT
k mΦ

i =
n∑

l=1

α
(k)
l

(
1

ni

ni∑

j=1

〈Φ(xl),Φ(x(i)
j )〉

)

Replacing the dot-product by some kernel functionk(x,y) and defining(m̃i)l = 1
ni

∑ni

j=1 k(xl,x
(i)
j ),

we getwT
k mΦ

i = α
T
k m̃i with (αk)l = α

(k)
l . Similarly, we have

wT
k mΦ = wT

k

c∑

i=1

pim
Φ
i = α

T
k

c∑

i=1

pim̃i = α
T
k m̃

with m̃ =
∑c

i=1 pim̃i. This meanswT
k (mΦ

i − mΦ) = α
T
k (m̃i − m̃) and

d∑

k=1

wT
k SΦ

b wk =
d∑

k=1

c∑

i=1

pi(w
T
k (mΦ

i − mΦ))(wT
k (mΦ

i − mΦ))T

=
d∑

k=1

c∑

i=1

pT
i α

T
k (m̃i − m̃)(m̃i − m̃)T

αk =
d∑

k=1

α
T
k S̃bαk

whereS̃b =
∑c

i=1 pi(m̃i − m̃)(m̃i − m̃)T .

Similarly, one can simplifyWTSΦ
wW. First, we havewT

k (Φ(x
(i)
j )−mΦ

i ) = α
T
k (k

(i)
j −m̃i) with

(k
(i)
j )l = k(xl,x

(i)
j ). ConsideringwT

k SΦ
i wk = 1

ni

∑ni

j=1(w
T
k (Φ(x

(i)
j )−mΦ

i ))(wT
k (Φ(x

(i)
j )−mΦ

i ))T ,

we have

wT
k SΦ

i wk =
1

ni

ni∑

j=1

α
T
k (k

(i)
j − m̃i)(k

(i)
j − m̃i)

T
αk

=
1

ni

ni∑

j=1

α
T
k Ki(ej −

1

ni

1ni
)(ej −

1

ni

1ni
)TKT

i αk

=
1

ni

ni∑

j=1

α
T
k Ki(eje

T
j − 1

ni

ej1
T
ni
− 1

ni

1ni
eT

j +
1

n2
i

1ni
1T

ni
)KT

i αk

=
1

ni

α
T
k Ki(Ini×ni

− 1

ni

1ni
1T

ni
)KT

i αk

where(Ki)lj = k(xl,x
(i)
j ), Ini×ni

is theni × ni identity matrix,1ni
is theni-dimensional vector

of 1’s, andej is the canonical basis vector ofni dimensions. Thus, we obtain

d∑

k=1

wT
k SΦ

wwk =
d∑

k=1

c∑

i=1

pi
1

ni

α
T
k Ki(Ini

− 1

ni

1ni
1T

ni
)KT

i αk

=
d∑

k=1

α
T
k

(
c∑

i=1

pi
1

ni

Ki(Ini
− 1

ni

1ni
1T

ni
)KT

i

)
αk =

d∑

k=1

α
T
k S̃wαk
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whereS̃w =
∑c

i=1 pi
1
ni

Ki(Ini
− 1

ni

1ni
1T

ni
)KT

i . So the maximum margin criterion in the feature

spaceF is

J(W) =
d∑

k=1

α
T
k (S̃b − S̃w)αk (15)

Similar to the observations in developing the linear feature extractor based on MMC, one may

obtain that the above criterion is maximized by the largest eigenvectors of̃Sb− S̃w with constraints

α
T
k αk = 1, k = 1, . . . , d. However, it is not appropriate to obtain the mapping matrixdirectly

through the eigen decomposition ofS̃b − S̃w. According to our previous discussion, the null space

of SΦ
w contains important discriminatory information. However,we lose a very large portion of the

null space ofSΦ
w while we work withS̃w through the kernel trick. Note that the dimensionality of

NULL(S̃w) is usually onlyc. But the dimensionality of NULL(SΦ
w) is much larger or even infinite.

To avoid this problem, we should instead employ the maximum margin criterion in the feature

space as

J(W) =
d∑

k=1

α
T
k (2S̃b − S̃t)αk (16)

whereS̃t = 1
n
K(In − 1

n
1n1

T
n )KT and(K)ij = k(xi,xj) [25]. In this case, we can directly use the

eigenvectors of2S̃b − S̃t with the largest eigenvalues to constitute the mapping matrix because the

null space ofSΦ
t is useless for discriminant analysis. As we discussed in thelinear case, we may

obtain the mapping matrixΛ = [α1,α2, . . . ,αk] by simultaneously diagonalizing̃St andS̃b.

5 Experiments

In this section, we compare our methods with LDA, LDA+PCA, andkernel PCA on several differ-

ent datasets. All the experiments are performed on a Pentium2.4G and 1G RAM machine. First,

we will compare MMC with LDA on the famous Fisher’s iris dataset. which has no small sample

size problem. The iris dataset gives the measurements in centimeters of the sepal length and width

and the petal length and width, respectively, of 50 flowers from each of 3 species of iris. The

eigenvalues ofSb − Sw is 0.97 and−0.06. Since there is only one positive eigenvalue, we use the

corresponding eigenvector to constitute the map matrix of MMC. For LDA, we use two (i.e.c− 1)

eigenvectors as usual. The experimental procedure is as follows. After feature extraction by MMC

or LDA, we use the nearest centroid method to predict the class of a new observationx as

C(x) = arg min
k

d∑

i=1

(wT
i (x − mk))

2 (17)

i.e. the class whose mean vector is closest tox in the space of discriminant variables. To estimate

the error rates, we randomly split the dataset into three parts in a class-proportional manner, of
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Figure 1: Samples from the ORL dataset.

which two parts are used for training and the third part is kept for test. This procedure is repeated

for 200 times and the average error rates of LDA and MMC are2.06% and1.94%, respectively.

This shows that MMC can achieve a competing performance to LDA even though it maps the data

into a lower dimensional discriminant space.

Because the linear methods already achieves very high accuracies on the iris dataset, we em-

ploy another dataset, the vehicle dataset from STATLOG databases, to compare kernel MMC and

kernel PCA. The vehicle dataset contains 18 features of 846 silhouettes of four types of vehicle.

The vehicle may be viewed from one of many different angles. On the vehicle dataset, LDA and

MMC achieve a23.84% error rate. In contrast, kernel MMC achieves a19.39% error rate. In

this experiment, we employ the normalized polynomial kernel k(x,y)√
k(x,x)

√
k(y,y)

, wherek(·, ·) is the

polynomial kernel. The degree of the polynomial kernel is set to 2. For LDA, MMC, and kernel

MMC, we map the data into a three-dimensional (i.e.c − 1) discriminant space. We also apply

kernel PCA [25] on this dataset. We use the eigenvectors with eigenvalues larger than0.01 to con-

stitute the mapping matrix. The number of such eigenvectorsis dependent on the selected training

data. With the same kernel as the one employed by kernel MMC, there are usually around 14 such

eigenvectors. After feature extraction by kernel PCA, a support vector machine is employed to

classify samples as Schölkopf et al. did in [25]. The average error rate is22.71%, which is only

slightly better than those of the linear methods LDA and MMC.

In what follows, we will compare MMC with LDA+PCA on the small sample size datasets. The

original LDA+PCA [5] needs to determine the null space ofSw, which is very time consuming. So,

a pixel grouping method is applied before LDA+PCA in [5]1. Huanget al. improved LDA+PCA

by first removing the null space ofSt firstly. The algorithm of Huanget al. has the same recognition

accuracy as the original LDA+PCA but is more (both time and memory) efficient and can be

applied to the original (unresized) datasets directly. Thus, we compare MMC with the algorithm

1In the previous conference version of this paper, we simply resized the images to a smaller size
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Table 1: The averages and standard deviations of error rateson the ORL dataset. The first column

is the number of samples per class for training. The kernel MMC and kernel PCA use Gaussian

kernel withγ = 0.0075 andγ = 0.0025, respectively. MMC, LDA+PCA, and kernel MMC reduce

the dimensionality toc − 1. Kernel PCA uses the largest eigenvectors that preserve95% of the

variance.
Training samples MMC LDA+PCA kernel MMC kernel PCA

3 8.90 ± 2.37 8.90 ± 2.37 9.13 ± 2.39 12.17 ± 2.42

4 5.71 ± 1.47 5.71 ± 1.47 5.82 ± 1.64 9.53 ± 1.95

5 3.89 ± 1.43 3.89 ± 1.43 3.82 ± 1.33 9.00 ± 2.16

6 3.12 ± 1.40 3.12 ± 1.40 2.91 ± 1.53 9.19 ± 1.88

7 2.20 ± 1.38 2.20 ± 1.38 1.95 ± 1.31 9.93 ± 2.64

of Huanget al. instead of the original LDA+PCA here. In the experiment, we used the ORL face

dataset [24], which had been used to investigate the small sample size problem in [15, 29, 30].

Figure 1 depicts some sample images of a typical subset in theORL dataset. The ORL dataset

consists of 10 face images from 40 subjects for a total of 400 images, with some variation in pose,

facial expression and details. The resolution of the imagesis 112 × 92, with 256 gray-levels.

Before the experiments, we scale the pixel gray level to the range [0, 1]. We conduct a series of

experiments on ORL dataset and compared our results with those obtained using LDA+PCA and

kernel PCA. The average error rates of 50 runs are shown in Table 1. As we discussed before, MMC

and LDA+PCA (the algorithm of Huanget al.) achieve the same error rates.2 Besides, we observe

that kernel MMC just achieves similar results as linear MMC and LDA+PCA although it has a

significantly better performance than kernel PCA. The reasonis that the input space has already a

very high dimensionality (10304) so that the samples are scattered and are easy to classify. With

the kernel trick, we just map the data into a higher dimensional space. Thus, it does not improve

the performance. When the dimensionality of the input space is small, the kernel methods have the

superiority as shown on the vehicle dataset and in the next experiment.

Now we will show that our method performs much better than LDA+PCA whenn−c is close to

the dimensionalityD. Because the amount of training data is limited, we resize theimages of ORL

to 168 dimensions to create such a situation. We randomly select five images per person for training

and use the remaining images for test. For such a setting,n − c = 200 − 40 = 160, which is close

to 168. Thus, the dimensionality of the null space ofSw is around168 − 160 = 8, which is very

small with respect toc − 1 = 39. So, the performance of LDA+PCA (both the original algorithm

2Although MMC, the algorithm of Huanget al., and the original LDA+PCA have the same discriminatory capa-

bility in principle, we observe that MMC and the algorithm ofHuanget al. often obtain better results than the original

LDA+PCA in practice. The reason may be that, when the original LDA+PCA calculates the rank and the null space

of Sw, the cumulative error due to floating-point imprecisions issignificant sinceSw is usually huge.
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and the one of Huanget al.) will drop significantly because it loses a lot of information when it

maximizes the between-class scatter in this small null space. In fact, LDA+PCA has a64.84%

average error rate. On the other hand, our method tries to maximize the between-class scatter in

the whole input space and achieves a much better error rate of12.96%. Besides, kernel MMC and

kernel PCA could obtain the error rates of5.29% and7.91% with Gaussian kernels (γ = 0.058

for kernel MMC andγ = 0.019 for kernel PCA), respectively. This confirms our above argument

that kernel methods can obtain better results than linear methods when the dimensionality of input

space is relatively small.

To demonstrate that our method is effective not only for facerecognition but also for other

applications, we apply it to cancer classification with geneexpression data. Accurate diagnosis

of human cancer is essential in cancer treatment. Recently, the advances in microarray technol-

ogy enable us to simultaneously observe the expression levels of many thousands of genes on

the transcription level. In principle, tumor gene expression profiles can serve as molecular fin-

gerprints for cancer (phenotype) classification. Researchers believe that gene expression profiling

could be a precise, objective, and systematic approach for cancer diagnosis [11, 18]. In this exper-

iment, we apply our method on a brain cancer gene expression dataset, which is the dataset A in

[20]. This dataset contains 42 samples of 10 medulloblastomas, 10 malignant gliomas, 10 atypical

teratoid/rhabdoid tumors (AT/RTs), 8 primitive neuroectodermal tumors (PNETs), and 4 normal

cerebella. The brain dataset contains the expression of 5597 genes (i.e. features). Clearly, it is a

typical small sample size problem. On this dataset, MMC and kernel MMC achieve17.54% and

18.31% average error rates (based on 50 runs), where kernel MMC employ a Gaussian kernel with

γ = 0.00005. In contrast, kernel PCA obtains a32.31% error rate with the same kernel. We also

run the random forest method [3] on this dataset. The random forest algorithm is a state-of-art

classification method that grows many classification trees.To classify a new sample, the final pre-

diction is voted by all the trees in the forest. Because the random forest algorithm implicitly selects

features (i.e. dimensionality reduction) when growing a classification tree, we would like to com-

pare our method with it. On the brain cancer dataset, the random forest algorithm obtains a23.08%

error rate, which is significantly higher than those of our methods. It is another evidence that our

methods are able to extract the most discriminatory information (among the methods compared

above) for classification.

6 Conclusion

In pattern recognition, feature extraction techniques arewidely employed to reduce the dimension-

ality of data and to enhance the discriminatory information. In this paper, we have proposed some

linear and nonlinear feature extractors based on the maximum margin criterion. The new methods

can effectively extract the most discriminatory features and do not suffer from the small sample
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size problem. The experimental results show that the new methods are effective and robust. In

practice, the proposed nonlinear feature extractor could be slow when the dataset is large. It is an

interesting topic to develop a fast algorithm for the proposed nonlinear feature extractor.
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[25] B. Scḧolkopf, A. Smola, and K.-R. M̈uller. Nonlinear component analysis as a kernel eigen-

value problem.Neural Compution, 10:1299–1319, 1998.

[26] G. W. Stewart.Introduction to Matrix Computations. Academic Press, New York, 1973.

[27] Q. Tian, M. Barbero, Z.-H. Gu, and S. H. Lee. Image classification by the foley-sammon

transform.Optical Engineering, 25(7):834–840, 1986.

[28] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[29] H. Yu and J. Yang. A direct LDA algorithm for high-dimensional data — with application to

face recognition.Pattern Recognition, 34(10):2067–2070, 2001.

[30] W. Zhao, R. Chellappa, and P. Phillips. Subspace linear discriminant analysis for face recog-

nition. Technical Report CAR-TR-914, Center for Automation Research, University of Mary-

land, College Park, 1999.

18


