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Abstract First, data streams are continuously produced in large vol-
umes and high rates by external sources. The high rates
In today’s world, stream processing systems have be-of the streams along with their real-time rate requirements
come important, as applications like media broadcasting, necessitate a highly scalable and adaptable stream process
sensor network monitoring and on-line data analysis in- ing system. Second, a distributed stream processing system
creasingly rely on real-time stream processing. In this consists of a number of nodes geographically distributed,
paper, we propose a distributed stream processing systenwhere the functionality of a processing component is of-
that composes stream processing applications dynamjcally fered by a subset of the nodes of the system. Thus, stream
while meeting their rate demands. Our system consists ofprocessing in such a distributed stream processing system i
the following components: (1) a distributed component dis- achieved by combining components which are typically dis-
covery algorithm that discovers components available at persed across the nodes of the system. Third, computational
nodes on demand, (2) resource monitoring techniques toand communication resources are shared by multiple con-
maintain current resource availability information, (3) a current and competing streams. Fourth, stream processing
scheduling algorithm that schedules application exeeytio applications have inherent real-time requirements, in tha
and (4) a minimum cost composition algorithm that com- the data must be delivered in a timely manmeg, ,within a
poses applications dynamically based on component anddeadline
resource availability and scheduling demands. Our dethile
experimental results, over the PlanetLab testbed, demon-
strate the performance and efficiency of our approach.

A number of stream processing infrastructures have
been proposed in the literature, including Aurora[25],
STREAMI1], TelegraphCQ[2] and the Cougar project[29,
16]. The majority of the current work has focused on de-

) signing new operators and new query languages, as well as
1 Introduction building high-performance stream processing engines oper
ating in a single node. Recent efforts have proposed dis-

During the past few years, numerous applications thatributed stream processing infrastructures [5] and have in
generate and process continuous streaming data havgestigated composition and placement algorithms. The ma-
emerged. Examples include network traffic monitoring, jority of these (including our previous work[6, 20]) focus
financial data anaIySiS, multimedia delivery and sensor on Composition and p|acement techniques to manage and
streaming in which sensor data are processed and analyzegistribute the load equally across the system. However,
in real-time [1, 2]. In a typical stream processing applica- many types of stream processing applications, such as me-
tion, streams of data are processed concurrently and asyndia streaming, require that the data is processed and deliv-
chronously by one or more processing components. Exam-ered to the user at eequired minimum rate For exam-
ples of processing components include filtering operationsple, in a video streaming application, data needs to arrive
(e.g. selection of specific values or ranges of values, pro- o the destination at a rate high enough for the video to be
jection of specific attributes of the input), aggregatioe®p  properly presented and with small jitter. Allocating band-
ators, or more complex operations, such as video transcodwidth among competing streams to satisfy application rate
Ing. requirements is more complicated than performing "admis-

Processing of data streams brings significant challengession control”. This requires that the processing of each dat
to the design of distributed stream processing systemsistream by individual application components must be done

“This research was supported by NSF Awards 0330481 and 062719 @t @ required rate. In this work we propose such a distributed
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(a) Application Layer @—»@\A 2.1 System Architecture

Our distributed stream processing system is illustrated
in Figure 1. It consists of multiple nodes, connected in an

2 src/ 5::-79 5:2 overlay network. In our implementation we used the Pastry
Sf}' eﬁ =T overlay network [22]. Each node in the overlay offers one
i'll—l/ = ; = or moreservicesto the system. Each service is a function

that defines the processing of a finite amount of input data.
Examples of processing are aggregation of sensor readings,
data filtering or video transcoding. A stream processing ap-

, plication is executed collaboratively by peers of the gyste

. .@' that invoke the appropriate services. The instantiatioa of

Layer ,-~ /
. /

(== service on a node is calledcamponentA component is a
* o running instance of a service, that also includes state-info
@/. mation about the service execution and the application for
(c) Physical Network T - which the service is offered. A component operates on indi-
vidual chunks of data, namethta units Examples of data
Figure 1. The architecture of a distributed units are sequences of picture or audio frames (for exam-
stream processing system. ple, in a multimedia application), or sets of measured \&lue

(for example, in an application that analyzes sensor n&twor
data). Nodes in our system are responsible for processing
individual data units. The size of a data unit depends on the
application. Upon reception of a data unit by a node, the

. L : data unit is put in a queue in order to be processed. To exe-
sition), a distributed stream processing system that peEo ¢t 5 data unit, the appropriate component is invoked. The

composition of streams based on their rate requirements, e of 4 component is to receive data units created from

Our system allocates and adjusts the rates of the streamg§inar components in the network, process them and as a re-
based on the available processing capacity of the nodes and,i; create data units that are forwarded to the network for
the bandwidth of the communication links. The goal is to further processing. Thus, stream processing is performed

minimize the number of data packets that fail to be deliv- by having one or more sequences of data units transferred

ered with the requested rate. This is an indication that Somethrough the overlay network and being processed by com-
nodes are congested and that data packets may need to %nents hosted at the nodes of the network.

dropped. Adistinguishing characteristic of our approe_x:h [ We consider that the nodes in our system are charac-
that it considers the numbgr of the components reqL_urec_i_toterized by the resources they provide,g, CPU or band-
perform a stream processing operation and the avallab|lltywidth). Let  be the number of resources of each node.

of the res?ur:ces, and considers emp:jl%ylng two gr more 'c?'Each node has a limited capacity for each resource and a
stances of the same component on different nodes In ordef,,,,nent running on the node requires a fraction of that

to split_the process_ing requiremt_ants that would othervv?se capacity. The amount of resources consumed by a compo-
be aSS'Q”ed to a smgle_ processing component, to aCh'_eV%entci is proportional to the arrival rate’ of data units
the desired rate allocation. Our technique is entirely dis- arriving atc;. We assume that all constraining resources

tributed and requwes]: rr;lmlmal knowletégiln the form of ;he L be measured in a rate-base. Examples of such resources
Latekr]?quwehmentz N tv\? streams gn tl (Ceiconggst|on Iee include CPU cycles per second or bandwidth in bits per
ack from the nodes. We present detailed experimental re-gg o d. Lews (1 < j < K) be the amount of theth

sults, over the PlanetLab testbed[19], that demonstrate th resource required by componentwhen its arrival rate is

performance and efficiency of our approach. equal tol data unit per second. The resource requirements
of a component;, when its input rate is equal tb data

2 System Model unit per second, are represented byr@gquirement vector

u® = [uj’,...,u;’]. The requirements vector for a com-

ponent only depends on the service that is executed by the

component. Components operate on data units of fixed size

rﬁmd operation on a single data unit is independent of oper-

rates to streams based on their rate requirements.
In this paper we present RASC (RAte Splitting Compo-

In this section, we describe the model of our system.
First, we describe the architecture of our distributedastre
processing system. Then, we present the distributed strea

processing application.m()del- Finally, we descr?be the'rat The data unit size is application dependent and should bleystite
based stream composition problem addressed in this paperapplication designer.




ations on other data units. Thus, the resource consumptiorcurrent work we consider the case where the input and out-
of ¢; when processing data units per second, is equal to put rates of the components of the same substream are the
r-u® = [r-ui’,...,r-uy’]. The amount of thgth resource ~ same. However, our solution can be extended to consider
available on a node is represented by?, 1 < j < k. The the more general case where components can have different
amount of resources available at nodés represented by input and output rates. Components running intermediate

theavailability vectorA™ = [AT, ..., A}]. services of substreainl < I < m, may experience higher
or lower input rates than the rate definedrjii?, depend-
2.2 Service Request Model ing on the functionality each of them provides. We define

therate ratio R¢ = ’;—u’ as the ratio of the output rate to

The user can request a stream processing application byhe input rate of componenf. The problem is easier to be
submitting aservice requesteq for an applicationto one solved whenRk‘ = 1. In the case that a data unit cannot be
of the nodes in the system. The request contains: (43rA delivered at the requested rate (this happens when the data
vice request grapli, ., like the one shown in Figure 2 and unit experiences processing or communication delays at the
(2) therate requirements vectpr™? = [r7°7 .. pred] node because of queuing), the data unit will be dropped.
for the application that will be generated. The service re- This makes the problem of allocating the appropriate com-
quest graph describes the components invoked by the appliponents more important, as the probability of dropping a
cation and the sequence of component invocation. A servicedata unit increases with the load of a node. The fraction of
request graph can consist of one or multipléostreams ~ data units dropped by a componefts drops®. In order
Each substream is intended to be processed sequentially bip decrease the load incurred to individual nodes due to high
a number of services. The rate requirement vector definegnput rates of components and thus to avoid dropping data
the delivery rate of data unit requested by the application Units, it is possible to employ a set of componefis},
dest.q, for each of then substreams defined in the service at different nodes, for a service operatignrequested by
request grapli,..,. For example, there are two substreams Greq- Such an example is shown in Figure 3 which repre-
in Figure 2: substream 1, to be processed by sersicaad ~ sents the mapping of the service request graph of 2 in the
s and then forwarded to the destination and, substream 2 0verlay network. In this example, we employ two instances
to be processed by servigg before arriving to the destina-  Of services,, that is, two components,, running on dif-
tion. When submitting a request, the user expects from theferent nodes. In such a case, each component processes a
system tocompose an applicatiompp by invoking one or  fraction of the data units to be processed for seryice
more services. The service request gra@h, specifies the
combination of services invoked by the application. Each 2.3 Problem Formulation
vertex ofG,.., represents the execution of a servic€dne

of the vertices of~,..,, thesourceservicesrc,.,, represents Our goal is, given a service requesy, to compose an
the source of the data that needs to be processed. Anothespplication that will execute the service requested-by
vertex of G, represents theestination servicedest, cq, so that it meets the application rate requiremefité. The

which is the service that presents the results of the applica application will be composed by instantiating the appropri
tion to the user. A directed edge from a vertex that representate components on the nodes of the system.e@ecution
a services; to a vertex that represents servigemeans that  graph will be the outcome of the composition algorithm.
the output of service; needs to be forwarded to the input Essentially, this represents the mapping of the service re-
of services,, typically through the virtual link that connects  quest graph on the overlay network. If necessary, the ex-
the peers hosting the respective components. ecution graph should include more than one components
The rate requirements vecteof¢? defines theresource per service of the request gragh..,, in order to satisfy
requirementgCPU processing time, etc) of each compo- resource constraints, to meet rate requirements, or to mini
nent in order to process the data units as specified Ry. mize the number of dropped data units. The composed ex-
It is important to note that since components are running ecution graph will satisfy the rate requirements set by the
individual operations, depending on the functionalityfidt  applicationr™4. The composition problem is defined as
components, the output rate of a component may be dif-follows:
ferent from the input rate. For example, if a compongnt
performs down-sampling of an audio input, then it is ex- Definition 1. Given a stream processing requesi =<
pected that its output will be forwarded to the next com- G,.,,r"™¢ >, and a distributed stream processing system
ponent at a rate:, lower than its input rate of;’. This composed of a sét of nodes. The optimal rate-based com-
can be described in the service request graph, where eacpposition problem is to find the execution graph that mini-
virtual link is characterized by a different rate, essédlytia  mizes the total number of dropped data units while respect-
this would be the output rates of the components. In our ing the resource constraints on the nodes as well as the rate
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Figure 2. An example of a service re- Figure 3. The execution graph represents the mapping

quest graph. of the service request graph on the overlay network in
which one or more components can be used to instan-
tiate a service.

requirements: 3 Our solution

Minimize - e g n(es) 1 In this section, we present RASC (RAte Splitting Com-
tnmaze - Zrin - arops @) position), a distributed stream processing system that dy-

_ s;t req namically composes applications while meeting their rate
Subject to: r*" =1, 1<l<m (2)  demands. RASC consists of: (1) a distributed component

Vn e N, Z réi u;: <A ji=1,....k (3) discovery mechanism to dynamicglly _discover components
e at the nodes to compose the application, (2) resource mon-

Vei, 7, = RS 1% 4) itoring techniques that keep track of the availability of th

CPU and bandwidth resources, (3) a component schedul-
ing algorithm that schedules component invocations to meet
application timing requirements, and (4) the minimum cost
composition algorithm, that composes applications dynam-
ically based on the component and resource availability and
the number of data units dropped.

wheredrops™(“) is the miss ratio of node(c;) that hosts
component:;, uj is the amount of thgth resource con-
sumed by componemt when processing one data unit per
second A is the amount of thgth resource available on

noden, r{est is the resulting rate of thigh substream arriv-
ing at the destination given ly,., andr;“?,1 <1 <mis
the required rate of thigh substream arriving at the destina-
tion, given by thdth element o£"°?. r;i andrg:, are the
input and output rate of component respectively, while Given a service composition request, RASC identifies
Re is the rate ratio of;. the most appropriate set of components offered by nodes of
the system, along with the rate with which data units should

The goal in the above equation 1 is to minimize the num- be sent to each of those components, in such a way so that
ber of data units dropped. Note, that, data units are dropped1) the rate requirement of the newly introduced stream pro-
due to unexpected processing and communication delays atessing application is met, while (2) the miss ratio of the
the nodes. This is an indication that the system is not ableapplication,.e. the number of data units dropped as a result
to process the data streams at the required rate. Thus, it i®f the system being unable to maintain the requested rate,
desirable to process data units at nodes with small drop rais minimized. RASC is based on reduction of the problem
tio, so that we minimize the probability that data units are into a minimum-cost flow problem. As a result, the rate as-
dropped. The above definition is a formulation of our prob- signment for individual components is integrated with the
lem as a minimum cost flow problem. Equation 3 expressesselection of the components themselves, rather than requir
the capacity constraints of each link between two nodes ining a separate step. Minimum-cost flow is a well studied
our system. Equation 4 expresses fthie conservation re-  problem, for which well-established efficient solutions ex
quirement The output rate of each component should be ist (e.g.[7, 10, 11]). Thus, our solution manages to split the
proportional to its input rate. Finally, equation 2 expesss execution of individual services to more than one compo-
the rate requirements of the user. Many of the metrics used — _ '
in the above formulas, Iikel;? anddrops”(ci), Change dy- The minimum cost flow problem con3|der_s, _that the ratg ratio ohea

. . . . . L0 component is equal to 1. In our problem definition, equatiorodsdnot

namically. As will be discussed in section 3.2, monitoring consider this restriction. In the case where the rate ratimt equal to 1, a
of these metrics is required. linear programming method can be used to solve equations 1-4.

3.1 Overview of RASC




nents, each of them running on a different node. Such distri-fered by the underlying overlay network. In our current im-
bution of components prevents exhausting the resources oplementation we use the Pastry overlay network[22]. Pas-
individual nodes and increases the utilization of the syste  try is a decentralized, self-organizing overlay network, i
making it possible to accommodate more service requestswhich discovery messages are efficiently propagated among
This is because, contrary to other methods, RASC considersa large number of nodes. The expected number of forward-
resources on multiple nodes while composing the executioning steps in the Pastry overlay network($logNV), while
of a stream processing request. the size of the routing table maintained in each node at the
For each application composition, we follow these steps: overlay is onlyO(logN). The querying node first gener-
(1) Discover the peers offering each of the requested ser-ates the component ID and then uses the Pastry discovery
vices, using the underlying Pastry overlay. Determine all mechanism to retrieve the list of hosts offering the reqaast
the possible component execution combinations for the ap-component.

plication. (2) Obtain utilization information for the lisko- Given the hosts that offer a service, the next step is to
wards the nodes hosting the above components. (3) Run theetrieve the resource availability at each node, as well as
minimum cost composition algorithm in order to determine the ratio of data units dropped at each host. In addition,
the configuration of the components and the rates. (4) In-each node monitors the arrival and departure rgjeand
stantiate the respective components and run the stream proq<  of each of its components. Thus, it can easily infer
cessing application. Each step is discussed in the resisof th jts available input and output bandwidth, given their rates
section. Performance metadata is retrieved by requesting it directl
from each host.
3.2 Resource Monitoring

RASC can include various types of resources. In this 3.4 Scheduling Algorithm
work, however, we consider the constraining resources of a

node to be the output and input bandwidth availablg,( A noden hosting a seC™ of components maintains a
andbj;, respectively) for sending or receiving data from the ready queue with all the data units to be scheduled at the
node. ThusA™ = [A7, A3] = [b};,,b},.]. The inputand  node. The order of execution is decided based on running
output bandwidth utilized are calculated by continuously time and arrival rate statistics. Given the arrival time:
monitoring the rates of incoming and outgoing data units. of the jth data unit to be processed by the(j + 1)th data
To avoid miscalculations caused by transient behavior, weunit is expected to arrive after time equal to the pei6d
average the statistics over a window of sizeéncluding the has passed. Thus, the expected arrival time of fhe 1)th
latest data units received. Additional performance statis data unit to be processed byis: a7”7”3+1 — a”u + pi.
tics are obtained from the scheduling algorithm (presentedGenerally, the execution of a data unit for compongmtas
in section 3.4). These statistics include: (1) The averageto be finished before the next data unit to be processed by
running timet“: of a data unit processed hy, averaged  (; arrives. In a different case, it means that the system is
over data units processed recently. (2) The rate of arrivalunstable, having data units fer arriving faster than being
,, for component;, also used by the scheduler in order processed. This means that the host cannot keep up with

tO |nfer theperiod p of ¢;. (3) The numbewlrops™(:) the incoming rate of; and that many oé,’s data units will
of data units that were dropped by componenbn peer  arrive late to their destination (as they will keep piling up

n(c;), either due to insufficient resources (input queue size) in the queue to be processeddy. In RASC, a scheduling
on Peem(ﬁ) or due to missed deadlines. Since the value strategy is designed, based on this observation. To prevent
of drops™(“:) changes dynamically depending on the load this from happening, eacfth data unitiu that needs to be
of the peer and the rate requirements of the applications, itprocessed by;, is aSS|gned a deadline equal to the expected

is essential to use feedback to monitor it. arrival timed? = arr,, of the next data unit to be pro-
. cessed by;. The deadllneid“ is calculated upon arrival of
3.3 Component Discovery du at the host. Upon making the scheduling decision at time

t, the laxity valueL(du) = t — (d® + t¢) is calculated for

Prior to composing the new stream processing applica-du. The laxity value represents a measure of urgency for the
tion, a noden needs to discover the nodes of the system thatapplication. If the laxity value is positive, this indicatthat
offer the required services. A service can be instantiated a the data unit will meet its deadline with high probabilitf. |
one or more nodes in the overlay. Each component in theL(du) < 0, this means thaiu will most probably miss its
overlay has a unique ID, generated using a hash functiondeadline and thus, it is dropped. Out of the data units the
(i.e., SHA-1). The querying node can request a componentlaxity of which is positive, the one with the smallest laxity
by supplying its ID to the object discovery mechanism of- is chosen to be processed.



3.5 Minimum Cost Algorithm Algorithm 1 COMPOSITIONALGORITHM
Discover the requested services using the DHT.

Let us consider a service request; with a service re- Gather the statistics about the relevant nodes.
quest graplG,.., and rate requirement vectet<? submit- for [ := 1tomdo
ted to a node in our system. After discovering the avail- Run the minimum cost algorithm for tlith substream.
able services and receiving the utilization feedback froen t if no acceptable assignment was foulnen
nodes, the next step is to determine the maximum rate that return error
a node can offer to a component instantiated on it. We ex- end if

press the bandwidth constraints considered by our system  Update the node capacities.
in terms of the requirements and availability vectors used end for

in equations 1-4. Since we consider the input and output return the assignment found.
bandwidth of a node to be the only constraints in our sys-
tem, the requirements vector of a compongernis given by

u“ = [b71 be,], whereb:; andbgi, respectively repre-  This makes the optimal composition problem too hard to
sent the input and output bandwidth of the node hosting  solve with a naive approach, as the number of combinations
consumed whei; is receiving or transmitting at the rate is exponential with respect to the number of components. In
of 1 data unit per second. The availability constraint of addition to that, the rates on the edges of any devised execu-
each node exists due to the available input and output bandtion graph can be also modified, making the problem even
width. Thus, the availability vector for a nodeis equal to more complex.

A" = [b2,b2,,], whereb?: andb”,, respectively represent

wn? Cout mn ou
the input and output bandwidth available on nedesiven We solve the aforementioned problem by repeating the
the above resource requirements veai6r for a compo-  following method in turn for each substreambstream,,
nentc; and resource availability vect@™ for a noden, we 1 < 1 < m of the substreams in the request graph: For
determine the maximum raig, ... (c¢;,n) of component; each edge in the composition graph that refers to a con-

when instantiated on node using the following method:  nection forsubstream; we define theapacitycap® of e to
The maximum rate.,...(¢;,n) is constrained by the most be equal to the maximum incoming rate of the node at the

scarce resource af (with respect to the requirementsgj. end ofe. For example, in Figure 5, the capacityp®' of
This means that the maximum rate in discussion is equaledgee; is set to be equal to the maximum incoming rate
t0 Fmas(ci,n) = min{ 2L, ..., 2L 1n our case, since  "maz(n3) of nodens. In addition, we define theostcost®

u .
input and output bandwidth are ‘the metrics under consid-
eration, the above formula means that the maximum rate
of ¢; is equal to the maximum rate that nogdecan trans-
mit or receive (more formallyr,,q.(ci,n) = Tmaz(n) =
mln{qu bgut})

The goal of the algorithm is to compose an execution
graph for requesteq, given the peers that host each of

of an edgee to be the ratio of dropped data units, observed
during a specific time window. Then, the sub-problem for
thelth substream is reduced to the minimum-cost flow prob-
lem [7, 10, 11]: We need to find a rate assignment for each
of the edges of the composition graph that refers td/tine
substream, so that: (1) The capacities of the edges of the
composition algorithm will be taken into account (equation

the requested services, their utilization and the rateirequ 3). (2) The sum of the rates arriving to the destination com-

ments. An example of an execution graph is shown in figure ponent by components running services ofithesubstream
3 ' of the service request graph, will be equal to the respective

rate requirement; “? defined in the rate requirements vec-
tor r"¢? (equation 2). (3) The expected number of dropped
edata units, expressed by the weighted sum of the input rates
of the respective components, will be minimized (expressed
gy equation 1).

After running the algorithm for th&h substream, the ca-
pacities on the edges of the composition graph are updated
to reflect the assignment of components to nodes hosting
fservices that can be used by other substreams. After that,
],he algorithm is repeated for substream 1, until all the
services requested lty,.., are assigned to nodes. This way,
the optimal rate assignment is efficiently performed. The

Example 1. To better illustrate our method, let us consider
a stream processing request with a request graph like th
one in Figure 2. As discussed earlier, there are two differ-
ent substreams in that request graph: One through service
s1 andss and one through servieg. Assume that service
sy Is offered by nodesis andn,, so is offered by nodes
ny1 andno and thatss is offered by nodes, andns (Fig-
ure 4). In that case, the graph of Figure 3 is just one o
many possible execution graphs that can be constructed fo
the stream processing request graph of Figure 2. All the
different possible combinations are shown in Figure 5. In
order to devise the execution graph, one has to consider all | the case components on both ends of an edie to be invoked on
the component execution combinations shown in Figure 5.the same node, the capacityeois set tocc.
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4 Performance Evaluation
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We present the performance of our approach and test its
scalability against different input rates. We compare our
approach with an algorithm that randomly decides on the
placement of the component and a greedy algorithm that
places each component to the node with the fewest dropped
data units. All the experiments were run on a prototype 0 Avt?gge e (Kbijc) 200
implementation of RASC over the PlanetLab [19] testbed.
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Figure 6. The number of requests that were
4.1 Experimental Setup successfully composed.

RASC was implemented in abol®800 lines of code in
Java. Serwce_ discovery and Stat.IStICS collection were im- 4.2 Results and Analysis
plemented using the FreePastry library [8], an open source
implementation of Pastry. Each of the results presented is

the average 05 runs, each o132 PlanetLab nodes. The h h alaorith bl d U
sets of experiments ran on different times and days to en-Juests that each algorithm was able to accommodate. Us-

sure that the results were not biased by a specific state ofd the minimum cost composmor_l algorlthmj the sy;tem o
the PlanetLab nodes. There wel unique services of- able to compose many more applications, without violating
fered in the system. Each node hoseservices, resulting the resource constraints of the nodes. This results in highe
in each service having an average replication degre.of utilization of the system. What is also important, is that
Each service request includedo 5 services, chosen ran- the rate of the streams does not affect the system when us-

domly among the services available on the system. The ratd"d the minimum cost composition algorithm. Random and
required by each service request ranged frghi pbs to greedy composition methods are more vulnerable to such
200K bps changes, as they depend on the capacity of the most pow-

erful nodes that offers the relevant services. Insteadi-min

We compared the minimum cost composition method mum cost composition depends on the cumulative capacit
with the following algorithms: (1) Aandom algorithnthat P pends on th wpacity
of the nodes in the system, utilizing it most appropriately

does not take into account the capacity of the nodes when h ded
composing the execution graph. (2)géeedy composition when needed.

algorithm, that iterates through components and places each

of them to the node with the smallest drop ratio. Both of Average End-to-End Delay: The average end-to-end de-
these algorithms considered the bandwidth capacity of thelay of the data units is shown in Figure 7. The minimum
nodes. cost composition used in RASC offe?9% to 70% im-

Composed Requests: Figure 6 shows the number of re-
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Figure 7. The average delay of the data units.
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Figure 8. The fraction of data units that were
not dropped.

provement over the random composition algorithm 25d
to 75% improvement over the greedy approach. The rea-

son of the poor performance of greedy approach is that in

a single composition, it only calculates the miss ratio once

Thus, it keeps creating components on nodes with low miss

ratio, until their maximum capacity is reached. Creating
more than one components per service of the request grap
results in a big improvement for the minimum cost com-
position algorithm, since it is possible to share the load

of computationally intensive services among many nodes.

Note that using the minimum cost composition results in

lower delays, despite experiencing higher system load thar:]‘or which no node exists to provide enough resources, can

when random and greedy composition methods are use
(since more applications are composed when using the min
imum cost composition method).

Delivered Data Units: The fraction of data units that

Fraction of flawlessly delivered data units

. .
50 100 150 200
Average rate (Kb/sec)

Figure 9. The fraction of data units that were
delivered in a timely manner.
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Figure 10. The fraction of data units that were
delivered out of order.

shown later, using minimum cost composition, the system
managed to admit much more requests than the ones ad-
mitted when using the random or the greedy composition
methods. This resulted in the system having to manage
about 4 times the load when using the minimum cost ap-

Hproach than when using the greedy or random composition

approach. This happens since the utilization of the system
increases significantly, by using the minimum cost compo-
sition: Computationally intensive services do not need to
be instantiated on a single host. Instead, they are instan-
tiated on more than one nodes. As a result, (1) services

still be accommodated by the system and (2) services that

would significantly increase the miss ratio of a single node,

are distributed across many nodes, that would otherwise re-
main idle. Once more, our solution performs better, despite
servicing more applications.

were not dropped due to the system not being able to han-

dle them, is shown in Figure 8. The minimum cost com- Data Units Delivered On Time: A consideration against
position method manages to handle a greater fraction of thesplitting a service in multiple components is the introduc-
data units presented to the system. In addition, as will betion of timing and synchronization problems. The frac-



o ‘ ‘ e = the requested rate and usually, it has annoying effect®to th
resulting stream delivered at the destination. Jitter i& m

ric of high consideration when designing video and other
media streaming systems. In Figure 11, we can see that the
minimum cost composition results in a system that presents
3 to 10 times less jitter than the random approach and 4 to
8 times times less than the greedy approach.

04

03 -

02

Average Jitter (msec)

01

5 Related Work

“Average rate (Kbfseo Component Middleware: During the past few years,
substantial effort has focused on developing standards-
based component-oriented middleware such as OMG's
CORBA [18], Sun’s Enterprise JavaBeans [24] and Mi-
crosoft's COM [17]. These simplify the development of
platform-interoperable, vendor-independent and languag
neutral applications. Recently, Model Driven Development
technigues and tools have been integrated with component
middleware technologies to develop formally analyzable

Figure 11. The average jitter.

tion of data units that were delivered in a timely manner
(in respect to the total number of data units not dropped),
is shown in Figure 9. For a data unit to be delivered in a
timely manner, it means that it has to arrive to the desti-

nation in order and in respect with the application’s atriva d verifiable building block <9l ¢
rate requirement. If thg¢th data unit of a stream arrives out and vernable buriding block componen S[3]. Componen g
based architectures are employed more and more often in

of order, this means that th{g + 1)th data unit or a subse- N o
quent one has already arrived to the destination before the'[he Qe\(elopment of distributed applications [.13’ 21, 21, 26.
Similar to our work, a component system is presented in

jth data unit, rendering useless the data carried by the Iat-27 ¢  reali ificati . by th |
ter. Thejth data unit is considered to not arrive in respect [27] to meet real-time specifications given by the user. In

with the rate requirement, if it arrives at the destinatiba a [26], the authors use an informed branch-and-bound algo-

much later time than the one dictated by the arrival time of r|thm employing a competence function and forward check-

the (5 — 1)th data unit and the required period given by the 'ng tto I_expdedltz Its extei:uti)on. Bo;fhllthessvalgprlti]ms Te
rate requirement,., of the application. As shown in Fig- centralized and meant fo be run ofl-line. Yve aim for opti-
ure 9. the fraction of delivered data units that did not ariv mal resource allocation, that is efficient and can be is based

in a timely manner, is small. on current system _conditi_ons and application requirements
Also, our system is designed to address the demands of
stream processing applications. In the QuO project, mech-
Data Units Delivered Out Of Order: Figure 10 shows anisms for providing dynamic QoS support for component-
the fraction of data units that were delivered out of order based app"ca’[ions have been proposed [23] However, they
(i.e., later than at least one of the data units prOdUCEd in mainiy focus on assembiing and Configuring these compo-
their succession). This number remains low for all the al- nents to enable adaptive QoS management. Our algorithms

gorithms. The minimum cost algorithm is shown to per- can be implemented over their components.
form at least the same as the greedy composition approach.

In many cases, it is twice as good as greedy. The ran'Streaming Applications:

e . . . Recent efforts have studied the
dom composition algorithm is up tbtimes worse than the

h luti havi  the d its deli q problem of resource allocation in distributed stream pro-
other solutions, having up @ of the data units delivered  osqing environments [13, 15, 28]. Most optimal service

out of order. The performance of both greedy and randomcomposition is accomplished in [13], using a probing pro-

is shown to improve when the required application rate is 0| ang coarse-grained global knowledge. The objective
200Kb/sec. This is because greedy and random executejq 4, achieve the best load balancing among the nodes of the
few of the requested applications, due to their inability to system, while keeping the QoS within requirements of the
compose many of them. user. Our work targets fully utilizing the given resources
of the system in order to maximize the QoS of the offered
Average Jitter:  Jitter is presented in a stream processing services, with the resource constraints of the nodes in.mind
application when a unit of a stream arrives at the destinatio We have previously investigated different aspects of over-
later than the deadline set by the arrival of the data unit pre lays for distributed applications. In [3] we have focused
ceding it and the period set by the rate requirements. Jitteron the task scheduling algorithm, while in [4] we have de-
is the amount of time by which the data unit was delayed scribed a decentralized media streaming and transcoding ar
in respect to this deadline. It is undesirable, since it drop chitecture. In [21], we considered re-using components in



order to improve overall efficiency.

derNet [12] and PROMISE [14]. SpiderNet uses a probing
protocol to setup the service graph, while in PROMISE a

receiver selects senders based on characteristics suoh as t

offered rate, the availability, the available bandwidthda

the loss rate. The performance of these methods can be fur{13]

ther increased by incorporating RASC.

6 Conclusions

In this paper we have studied the problem of dynamic [15

rate allocation for distributed stream processing applica

tions in large-scale overlays. We have proposed a dynamic
composition algorithm that selects application compoment [16]

dynamically, while considering the rate requirement of the
application, the resource availability and the number ¢tdda

units that have missed their deadlines.
mented our distributed stream processing technique on the
PlanetLab testbed. Our experimental results demonstrate

the efficiency, scalability and performance of our approach [19]
For our future work, we intend to study the performance of [20]

We have imple-

our approach under multiple resource constraints.
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