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Abstract

In today’s world, stream processing systems have be-
come important, as applications like media broadcasting,
sensor network monitoring and on-line data analysis in-
creasingly rely on real-time stream processing. In this
paper, we propose a distributed stream processing system
that composes stream processing applications dynamically,
while meeting their rate demands. Our system consists of
the following components: (1) a distributed component dis-
covery algorithm that discovers components available at
nodes on demand, (2) resource monitoring techniques to
maintain current resource availability information, (3) a
scheduling algorithm that schedules application execution,
and (4) a minimum cost composition algorithm that com-
poses applications dynamically based on component and
resource availability and scheduling demands. Our detailed
experimental results, over the PlanetLab testbed, demon-
strate the performance and efficiency of our approach.

1 Introduction

During the past few years, numerous applications that
generate and process continuous streaming data have
emerged. Examples include network traffic monitoring,
financial data analysis, multimedia delivery and sensor
streaming in which sensor data are processed and analyzed
in real-time [1, 2]. In a typical stream processing applica-
tion, streams of data are processed concurrently and asyn-
chronously by one or more processing components. Exam-
ples of processing components include filtering operations
(e.g. selection of specific values or ranges of values, pro-
jection of specific attributes of the input), aggregation oper-
ators, or more complex operations, such as video transcod-
ing.

Processing of data streams brings significant challenges
to the design of distributed stream processing systems:
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First, data streams are continuously produced in large vol-
umes and high rates by external sources. The high rates
of the streams along with their real-time rate requirements
necessitate a highly scalable and adaptable stream process-
ing system. Second, a distributed stream processing system
consists of a number of nodes geographically distributed,
where the functionality of a processing component is of-
fered by a subset of the nodes of the system. Thus, stream
processing in such a distributed stream processing system is
achieved by combining components which are typically dis-
persed across the nodes of the system. Third, computational
and communication resources are shared by multiple con-
current and competing streams. Fourth, stream processing
applications have inherent real-time requirements, in that
the data must be delivered in a timely manner,e.g.,within a
deadline.

A number of stream processing infrastructures have
been proposed in the literature, including Aurora[25],
STREAM[1], TelegraphCQ[2] and the Cougar project[29,
16]. The majority of the current work has focused on de-
signing new operators and new query languages, as well as
building high-performance stream processing engines oper-
ating in a single node. Recent efforts have proposed dis-
tributed stream processing infrastructures [5] and have in-
vestigated composition and placement algorithms. The ma-
jority of these (including our previous work[6, 20]) focus
on composition and placement techniques to manage and
distribute the load equally across the system. However,
many types of stream processing applications, such as me-
dia streaming, require that the data is processed and deliv-
ered to the user at arequired minimum rate. For exam-
ple, in a video streaming application, data needs to arrive
to the destination at a rate high enough for the video to be
properly presented and with small jitter. Allocating band-
width among competing streams to satisfy application rate
requirements is more complicated than performing ”admis-
sion control”. This requires that the processing of each data
stream by individual application components must be done
at a required rate. In this work we propose such a distributed
stream processing system designed to allocate and adjust
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Figure 1. The architecture of a distributed
stream processing system.

rates to streams based on their rate requirements.
In this paper we present RASC (RAte Splitting Compo-

sition), a distributed stream processing system that performs
composition of streams based on their rate requirements.
Our system allocates and adjusts the rates of the streams
based on the available processing capacity of the nodes and
the bandwidth of the communication links. The goal is to
minimize the number of data packets that fail to be deliv-
ered with the requested rate. This is an indication that some
nodes are congested and that data packets may need to be
dropped. A distinguishing characteristic of our approach is
that it considers the number of the components required to
perform a stream processing operation and the availability
of the resources, and considers employing two or more in-
stances of the same component on different nodes in order
to split the processing requirements that would otherwise
be assigned to a single processing component, to achieve
the desired rate allocation. Our technique is entirely dis-
tributed and requires minimal knowledge in the form of the
rate requirements of the streams and the congestion feed-
back from the nodes. We present detailed experimental re-
sults, over the PlanetLab testbed[19], that demonstrate the
performance and efficiency of our approach.

2 System Model

In this section, we describe the model of our system.
First, we describe the architecture of our distributed stream
processing system. Then, we present the distributed stream
processing application model. Finally, we describe the rate-
based stream composition problem addressed in this paper.

2.1 System Architecture

Our distributed stream processing system is illustrated
in Figure 1. It consists of multiple nodes, connected in an
overlay network. In our implementation we used the Pastry
overlay network [22]. Each node in the overlay offers one
or moreservicesto the system. Each service is a function
that defines the processing of a finite amount of input data.
Examples of processing are aggregation of sensor readings,
data filtering or video transcoding. A stream processing ap-
plication is executed collaboratively by peers of the system
that invoke the appropriate services. The instantiation ofa
service on a node is called acomponent. A component is a
running instance of a service, that also includes state infor-
mation about the service execution and the application for
which the service is offered. A component operates on indi-
vidual chunks of data, nameddata units. Examples of data
units are sequences of picture or audio frames (for exam-
ple, in a multimedia application), or sets of measured values
(for example, in an application that analyzes sensor network
data). Nodes in our system are responsible for processing
individual data units. The size of a data unit depends on the
application. Upon reception of a data unit by a node, the
data unit is put in a queue in order to be processed. To exe-
cute a data unit, the appropriate component is invoked. The
role of a component is to receive data units created from
other components in the network, process them and as a re-
sult, create data units that are forwarded to the network for
further processing. Thus, stream processing is performed
by having one or more sequences of data units transferred
through the overlay network and being processed by com-
ponents hosted at the nodes of the network.

We consider that the nodes in our system are charac-
terized by the resources they provide, (e.g. CPU or band-
width). Let k be the number of resources of each node.
Each node has a limited capacity for each resource and a
component running on the node requires a fraction of that
capacity. The amount of resources consumed by a compo-
nentci is proportional to the arrival raterci

in of data units
arriving at ci. We assume that all constraining resources
can be measured in a rate-base. Examples of such resources
include CPU cycles per second or bandwidth in bits per
second. Letuci

j (1 ≤ j ≤ k) be the amount of thejth
resource required by componentci when its arrival rate is
equal to1 data unit per second. The resource requirements
of a componentci, when its input rate is equal to1 data
unit per second, are represented by itsrequirement vector
uci = [uci

1 , . . . , uci

k ]. The requirements vector for a com-
ponent only depends on the service that is executed by the
component. Components operate on data units of fixed size
and operation on a single data unit is independent of oper-

The data unit size is application dependent and should be setby the
application designer.



ations on other data units. Thus, the resource consumption
of ci when processingr data units per second, is equal to
r ·uci = [r ·uci

1 , . . . , r ·uci

k ]. The amount of thejth resource
available on a noden is represented byAn

j , 1 ≤ j ≤ k. The
amount of resources available at noden is represented by
theavailability vectorAn = [An

1 , . . . , An
k ].

2.2 Service Request Model

The user can request a stream processing application by
submitting aservice requestreq for an applicationto one
of the nodes in the system. The request contains: (1) Aser-
vice request graphGreq, like the one shown in Figure 2 and
(2) the rate requirements vector, rreq = [rreq

1 , . . . , rreq
m ]

for the application that will be generated. The service re-
quest graph describes the components invoked by the appli-
cation and the sequence of component invocation. A service
request graph can consist of one or multiplesubstreams.
Each substream is intended to be processed sequentially by
a number of services. The rate requirement vector defines
the delivery rate of data unit requested by the application
destreq, for each of them substreams defined in the service
request graphGreq. For example, there are two substreams
in Figure 2: substream 1, to be processed by servicess1 and
s2 and then forwarded to the destination and, substream 2,
to be processed by services3 before arriving to the destina-
tion. When submitting a request, the user expects from the
system tocompose an applicationapp by invoking one or
more services. The service request graphGreq specifies the
combination of services invoked by the application. Each
vertex ofGreq represents the execution of a services. One
of the vertices ofGreq, thesourceservicesrcreq, represents
the source of the data that needs to be processed. Another
vertex ofGreq represents thedestination service, destreq,
which is the service that presents the results of the applica-
tion to the user. A directed edge from a vertex that represent
a services1 to a vertex that represents services2, means that
the output of services1 needs to be forwarded to the input
of services2, typically through the virtual link that connects
the peers hosting the respective components.

The rate requirements vectorrreq defines theresource
requirements(CPU processing time, etc) of each compo-
nent in order to process the data units as specified byGreq.
It is important to note that since components are running
individual operations, depending on the functionality of the
components, the output rate of a component may be dif-
ferent from the input rate. For example, if a componentci

performs down-sampling of an audio input, then it is ex-
pected that its output will be forwarded to the next com-
ponent at a raterci

out lower than its input rate ofrci

in. This
can be described in the service request graph, where each
virtual link is characterized by a different rate, essentially,
this would be the output rates of the components. In our

current work we consider the case where the input and out-
put rates of the components of the same substream are the
same. However, our solution can be extended to consider
the more general case where components can have different
input and output rates. Components running intermediate
services of substreaml, 1 ≤ l ≤ m, may experience higher
or lower input rates than the rate defined inrreq

l , depend-
ing on the functionality each of them provides. We define

the rate ratio Rci =
r

ci

out

r
ci

in

as the ratio of the output rate to

the input rate of componentci. The problem is easier to be
solved whenRci = 1. In the case that a data unit cannot be
delivered at the requested rate (this happens when the data
unit experiences processing or communication delays at the
node because of queuing), the data unit will be dropped.
This makes the problem of allocating the appropriate com-
ponents more important, as the probability of dropping a
data unit increases with the load of a node. The fraction of
data units dropped by a componentci is dropsci . In order
to decrease the load incurred to individual nodes due to high
input rates of components and thus to avoid dropping data
units, it is possible to employ a set of components{cs

i},
at different nodes, for a service operationsi requested by
Greq. Such an example is shown in Figure 3 which repre-
sents the mapping of the service request graph of 2 in the
overlay network. In this example, we employ two instances
of services2, that is, two componentsc2, running on dif-
ferent nodes. In such a case, each component processes a
fraction of the data units to be processed for services2.

2.3 Problem Formulation

Our goal is, given a service requestreq, to compose an
application that will execute the service requested byreq
so that it meets the application rate requirementsrreq. The
application will be composed by instantiating the appropri-
ate components on the nodes of the system. Anexecution
graph will be the outcome of the composition algorithm.
Essentially, this represents the mapping of the service re-
quest graph on the overlay network. If necessary, the ex-
ecution graph should include more than one components
per service of the request graphGreq, in order to satisfy
resource constraints, to meet rate requirements, or to mini-
mize the number of dropped data units. The composed ex-
ecution graph will satisfy the rate requirements set by the
applicationrreq. The composition problem is defined as
follows:

Definition 1. Given a stream processing requestreq =<
Greq, r

req >, and a distributed stream processing system
composed of a setN of nodes. The optimal rate-based com-
position problem is to find the execution graph that mini-
mizes the total number of dropped data units while respect-
ing the resource constraints on the nodes as well as the rate
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requirements:

Minimize :
∑

ci

rci

in · dropsn(ci) (1)

Subject to : rdest
l = rreq

l , 1 ≤ l ≤ m (2)

∀n ∈ N ,
∑

ci∈n

rci

in · uci

j ≤ An
j , j = 1, . . . , k (3)

∀ci, rci

out = Rci · rci

in (4)

wheredropsn(ci) is the miss ratio of noden(ci) that hosts
componentci, uci

j is the amount of thejth resource con-
sumed by componentci when processing one data unit per
second,An

j is the amount of thejth resource available on
noden, rdest

l is the resulting rate of thelth substream arriv-
ing at the destination given byGreq andrreq

l , 1 ≤ l ≤ m is
the required rate of thelth substream arriving at the destina-
tion, given by thelth element ofrreq. rci

in andrci

out are the
input and output rate of componentci respectively, while
Rci is the rate ratio ofci.

The goal in the above equation 1 is to minimize the num-
ber of data units dropped. Note, that, data units are dropped
due to unexpected processing and communication delays at
the nodes. This is an indication that the system is not able
to process the data streams at the required rate. Thus, it is
desirable to process data units at nodes with small drop ra-
tio, so that we minimize the probability that data units are
dropped. The above definition is a formulation of our prob-
lem as a minimum cost flow problem. Equation 3 expresses
the capacity constraints of each link between two nodes in
our system. Equation 4 expresses therate conservation re-
quirement: The output rate of each component should be
proportional to its input rate. Finally, equation 2 expresses
the rate requirements of the user. Many of the metrics used
in the above formulas, likeAn

j anddropsn(ci), change dy-
namically. As will be discussed in section 3.2, monitoring
of these metrics is required.

3 Our solution

In this section, we present RASC (RAte Splitting Com-
position), a distributed stream processing system that dy-
namically composes applications while meeting their rate
demands. RASC consists of: (1) a distributed component
discovery mechanism to dynamically discover components
at the nodes to compose the application, (2) resource mon-
itoring techniques that keep track of the availability of the
CPU and bandwidth resources, (3) a component schedul-
ing algorithm that schedules component invocations to meet
application timing requirements, and (4) the minimum cost
composition algorithm, that composes applications dynam-
ically based on the component and resource availability and
the number of data units dropped.

3.1 Overview of RASC

Given a service composition request, RASC identifies
the most appropriate set of components offered by nodes of
the system, along with the rate with which data units should
be sent to each of those components, in such a way so that
(1) the rate requirement of the newly introduced stream pro-
cessing application is met, while (2) the miss ratio of the
application,i.e. the number of data units dropped as a result
of the system being unable to maintain the requested rate,
is minimized. RASC is based on reduction of the problem
into a minimum-cost flow problem. As a result, the rate as-
signment for individual components is integrated with the
selection of the components themselves, rather than requir-
ing a separate step. Minimum-cost flow is a well studied
problem, for which well-established efficient solutions ex-
ist (e.g.[7, 10, 11]). Thus, our solution manages to split the
execution of individual services to more than one compo-

The minimum cost flow problem considers that the rate ratio of each
component is equal to 1. In our problem definition, equation 4 does not
consider this restriction. In the case where the rate ratio is not equal to 1, a
linear programming method can be used to solve equations 1-4.



nents, each of them running on a different node. Such distri-
bution of components prevents exhausting the resources of
individual nodes and increases the utilization of the system,
making it possible to accommodate more service requests.
This is because, contrary to other methods, RASC considers
resources on multiple nodes while composing the execution
of a stream processing request.

For each application composition, we follow these steps:
(1) Discover the peers offering each of the requested ser-
vices, using the underlying Pastry overlay. Determine all
the possible component execution combinations for the ap-
plication. (2) Obtain utilization information for the links to-
wards the nodes hosting the above components. (3) Run the
minimum cost composition algorithm in order to determine
the configuration of the components and the rates. (4) In-
stantiate the respective components and run the stream pro-
cessing application. Each step is discussed in the rest of this
section.

3.2 Resource Monitoring

RASC can include various types of resources. In this
work, however, we consider the constraining resources of a
node to be the output and input bandwidth available (bn

out

andbn
in respectively) for sending or receiving data from the

node. Thus,An = [An
1 , An

2 ] = [bn
in, bn

out]. The input and
output bandwidth utilized are calculated by continuously
monitoring the rates of incoming and outgoing data units.
To avoid miscalculations caused by transient behavior, we
average the statistics over a window of sizeh, including the
latest data units received. Additional performance statis-
tics are obtained from the scheduling algorithm (presented
in section 3.4). These statistics include: (1) The average
running timetci of a data unit processed byci, averaged
over data units processed recently. (2) The rate of arrival
rci

in for componentci, also used by the scheduler in order
to infer theperiod pci of ci. (3) The numberdropsn(ci)

of data units that were dropped by componentci on peer
n(ci), either due to insufficient resources (input queue size)
on peern(ci), or due to missed deadlines. Since the value
of dropsn(ci) changes dynamically depending on the load
of the peer and the rate requirements of the applications, it
is essential to use feedback to monitor it.

3.3 Component Discovery

Prior to composing the new stream processing applica-
tion, a noden needs to discover the nodes of the system that
offer the required services. A service can be instantiated at
one or more nodes in the overlay. Each component in the
overlay has a unique ID, generated using a hash function
(i.e.,SHA-1). The querying node can request a component
by supplying its ID to the object discovery mechanism of-

fered by the underlying overlay network. In our current im-
plementation we use the Pastry overlay network[22]. Pas-
try is a decentralized, self-organizing overlay network, in
which discovery messages are efficiently propagated among
a large number of nodes. The expected number of forward-
ing steps in the Pastry overlay network isO(logN), while
the size of the routing table maintained in each node at the
overlay is onlyO(logN). The querying node first gener-
ates the component ID and then uses the Pastry discovery
mechanism to retrieve the list of hosts offering the requested
component.

Given the hosts that offer a service, the next step is to
retrieve the resource availability at each node, as well as
the ratio of data units dropped at each host. In addition,
each node monitors the arrival and departure raterci

in and
rci

out of each of its componentsci. Thus, it can easily infer
its available input and output bandwidth, given their rates.
Performance metadata is retrieved by requesting it directly
from each host.

3.4 Scheduling Algorithm

A noden hosting a setCn of components maintains a
ready queue with all the data units to be scheduled at the
node. The order of execution is decided based on running
time and arrival rate statistics. Given the arrival timearrci

j

of thejth data unit to be processed byci, the(j + 1)th data
unit is expected to arrive after time equal to the periodpci

has passed. Thus, the expected arrival time of the(j + 1)th
data unit to be processed byci is: arrci

j+1 = arrci

j + pci .
Generally, the execution of a data unit for componentci has
to be finished before the next data unit to be processed by
ci arrives. In a different case, it means that the system is
unstable, having data units forci arriving faster than being
processed. This means that the host cannot keep up with
the incoming rate ofci and that many ofci’s data units will
arrive late to their destination (as they will keep piling up
in the queue to be processed byci). In RASC, a scheduling
strategy is designed, based on this observation. To prevent
this from happening, eachjth data unitdu that needs to be
processed byci, is assigned a deadline equal to the expected
arrival timeddu = arrci

j+1 of the next data unit to be pro-
cessed byci. The deadlineddu is calculated upon arrival of
du at the host. Upon making the scheduling decision at time
t, the laxity valueL(du) = t− (ddu + tci) is calculated for
du. The laxity value represents a measure of urgency for the
application. If the laxity value is positive, this indicates that
the data unit will meet its deadline with high probability. If
L(du) < 0, this means thatdu will most probably miss its
deadline and thus, it is dropped. Out of the data units the
laxity of which is positive, the one with the smallest laxity
is chosen to be processed.



3.5 Minimum Cost Algorithm

Let us consider a service requestreq with a service re-
quest graphGreq and rate requirement vectorrreq submit-
ted to a node in our system. After discovering the avail-
able services and receiving the utilization feedback from the
nodes, the next step is to determine the maximum rate that
a node can offer to a component instantiated on it. We ex-
press the bandwidth constraints considered by our system
in terms of the requirements and availability vectors used
in equations 1-4. Since we consider the input and output
bandwidth of a node to be the only constraints in our sys-
tem, the requirements vector of a componentci is given by
uci = [bci

in, bci

out], wherebci

in and bci

out respectively repre-
sent the input and output bandwidth of the node hostingci

consumed whenci is receiving or transmitting at the rate
of 1 data unit per second. The availability constraint of
each node exists due to the available input and output band-
width. Thus, the availability vector for a noden is equal to
An = [bn

in, bn
out], wherebn

in andbn
out respectively represent

the input and output bandwidth available on noden. Given
the above resource requirements vectoruci for a compo-
nentci and resource availability vectorAn for a noden, we
determine the maximum ratermax(ci, n) of componentci

when instantiated on noden using the following method:
The maximum ratermax(ci, n) is constrained by the most
scarce resource ofn (with respect to the requirements ofci).
This means that the maximum rate in discussion is equal

to rmax(ci, n) = min
{

An

1

u
ci

1

, . . . ,
An

k

u
ci

k

}

. In our case, since

input and output bandwidth are the metrics under consid-
eration, the above formula means that the maximum rate
of ci is equal to the maximum rate that noden can trans-
mit or receive (more formally,rmax(ci, n) = rmax(n) =
min{bn

in, bn
out}).

The goal of the algorithm is to compose an execution
graph for requestreq, given the peers that host each of
the requested services, their utilization and the rate require-
ments. An example of an execution graph is shown in figure
3.

Example 1. To better illustrate our method, let us consider
a stream processing request with a request graph like the
one in Figure 2. As discussed earlier, there are two differ-
ent substreams in that request graph: One through services
s1 ands2 and one through services3. Assume that service
s1 is offered by nodesn3 andn4, s2 is offered by nodes
n1 andn2 and thats3 is offered by nodesn1 andn3 (Fig-
ure 4). In that case, the graph of Figure 3 is just one of
many possible execution graphs that can be constructed for
the stream processing request graph of Figure 2. All the
different possible combinations are shown in Figure 5. In
order to devise the execution graph, one has to consider all
the component execution combinations shown in Figure 5.

Algorithm 1 COMPOSITIONALGORITHM

Discover the requested services using the DHT.
Gather the statistics about the relevant nodes.
for l := 1 to m do

Run the minimum cost algorithm for thelth substream.
if no acceptable assignment was foundthen

return error
end if
Update the node capacities.

end for
return the assignment found.

This makes the optimal composition problem too hard to
solve with a naive approach, as the number of combinations
is exponential with respect to the number of components. In
addition to that, the rates on the edges of any devised execu-
tion graph can be also modified, making the problem even
more complex.

We solve the aforementioned problem by repeating the
following method in turn for each substreamsubstreaml,
1 ≤ l ≤ m of the substreams in the request graph: For
each edgee in the composition graph that refers to a con-
nection forsubstreaml we define thecapacitycape of e to
be equal to the maximum incoming rate of the node at the
end ofe. For example, in Figure 5, the capacitycape1 of
edgee1 is set to be equal to the maximum incoming rate
rmax(n3) of noden3 . In addition, we define thecostcoste

of an edgee to be the ratio of dropped data units, observed
during a specific time window. Then, the sub-problem for
thelth substream is reduced to the minimum-cost flow prob-
lem [7, 10, 11]: We need to find a rate assignment for each
of the edges of the composition graph that refers to thelth
substream, so that: (1) The capacities of the edges of the
composition algorithm will be taken into account (equation
3). (2) The sum of the rates arriving to the destination com-
ponent by components running services of thelth substream
of the service request graph, will be equal to the respective
rate requirementrreq

l defined in the rate requirements vec-
tor rreq (equation 2). (3) The expected number of dropped
data units, expressed by the weighted sum of the input rates
of the respective components, will be minimized (expressed
by equation 1).

After running the algorithm for thelth substream, the ca-
pacities on the edges of the composition graph are updated
to reflect the assignment of components to nodes hosting
services that can be used by other substreams. After that,
the algorithm is repeated for substreaml + 1, until all the
services requested byGreq are assigned to nodes. This way,
the optimal rate assignment is efficiently performed. The

In the case components on both ends of an edgee are to be invoked on
the same node, the capacity ofe is set to∞.
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composition algorithm is Algorithm 1.

4 Performance Evaluation

We present the performance of our approach and test its
scalability against different input rates. We compare our
approach with an algorithm that randomly decides on the
placement of the component and a greedy algorithm that
places each component to the node with the fewest dropped
data units. All the experiments were run on a prototype
implementation of RASC over the PlanetLab [19] testbed.

4.1 Experimental Setup

RASC was implemented in about13800 lines of code in
Java. Service discovery and statistics collection were im-
plemented using the FreePastry library [8], an open source
implementation of Pastry. Each of the results presented is
the average of5 runs, each on32 PlanetLab nodes. The5
sets of experiments ran on different times and days to en-
sure that the results were not biased by a specific state of
the PlanetLab nodes. There were10 unique services of-
fered in the system. Each node hosted5 services, resulting
in each service having an average replication degree of16.
Each service request included2 to 5 services, chosen ran-
domly among the services available on the system. The rate
required by each service request ranged from50Kpbs to
200Kbps.

We compared the minimum cost composition method
with the following algorithms: (1) Arandom algorithmthat
does not take into account the capacity of the nodes when
composing the execution graph. (2) Agreedy composition
algorithm, that iterates through components and places each
of them to the node with the smallest drop ratio. Both of
these algorithms considered the bandwidth capacity of the
nodes.
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Figure 6. The number of requests that were
successfully composed.

4.2 Results and Analysis

Composed Requests: Figure 6 shows the number of re-
quests that each algorithm was able to accommodate. Us-
ing the minimum cost composition algorithm, the system is
able to compose many more applications, without violating
the resource constraints of the nodes. This results in higher
utilization of the system. What is also important, is that
the rate of the streams does not affect the system when us-
ing the minimum cost composition algorithm. Random and
greedy composition methods are more vulnerable to such
changes, as they depend on the capacity of the most pow-
erful nodes that offers the relevant services. Instead, mini-
mum cost composition depends on the cumulative capacity
of the nodes in the system, utilizing it most appropriately
when needed.

Average End-to-End Delay: The average end-to-end de-
lay of the data units is shown in Figure 7. The minimum
cost composition used in RASC offers20% to 70% im-
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Figure 7. The average delay of the data units.
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Figure 8. The fraction of data units that were
not dropped.

provement over the random composition algorithm and25%
to 75% improvement over the greedy approach. The rea-
son of the poor performance of greedy approach is that in
a single composition, it only calculates the miss ratio once.
Thus, it keeps creating components on nodes with low miss
ratio, until their maximum capacity is reached. Creating
more than one components per service of the request graph,
results in a big improvement for the minimum cost com-
position algorithm, since it is possible to share the load
of computationally intensive services among many nodes.
Note that using the minimum cost composition results in
lower delays, despite experiencing higher system load than
when random and greedy composition methods are used
(since more applications are composed when using the min-
imum cost composition method).

Delivered Data Units: The fraction of data units that
were not dropped due to the system not being able to han-
dle them, is shown in Figure 8. The minimum cost com-
position method manages to handle a greater fraction of the
data units presented to the system. In addition, as will be

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200

F
ra

ct
io

n 
of

 fl
aw

le
ss

ly
 d

el
iv

er
ed

 d
at

a 
un

its

Average rate (Kb/sec)

random
greedy

mincost

Figure 9. The fraction of data units that were
delivered in a timely manner.
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Figure 10. The fraction of data units that were
delivered out of order.

shown later, using minimum cost composition, the system
managed to admit much more requests than the ones ad-
mitted when using the random or the greedy composition
methods. This resulted in the system having to manage
about 4 times the load when using the minimum cost ap-
proach than when using the greedy or random composition
approach. This happens since the utilization of the system
increases significantly, by using the minimum cost compo-
sition: Computationally intensive services do not need to
be instantiated on a single host. Instead, they are instan-
tiated on more than one nodes. As a result, (1) services
for which no node exists to provide enough resources, can
still be accommodated by the system and (2) services that
would significantly increase the miss ratio of a single node,
are distributed across many nodes, that would otherwise re-
main idle. Once more, our solution performs better, despite
servicing more applications.

Data Units Delivered On Time: A consideration against
splitting a service in multiple components is the introduc-
tion of timing and synchronization problems. The frac-
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Figure 11. The average jitter.

tion of data units that were delivered in a timely manner
(in respect to the total number of data units not dropped),
is shown in Figure 9. For a data unit to be delivered in a
timely manner, it means that it has to arrive to the desti-
nation in order and in respect with the application’s arrival
rate requirement. If thejth data unit of a stream arrives out
of order, this means that the(j + 1)th data unit or a subse-
quent one has already arrived to the destination before the
jth data unit, rendering useless the data carried by the lat-
ter. Thejth data unit is considered to not arrive in respect
with the rate requirement, if it arrives at the destination at a
much later time than the one dictated by the arrival time of
the(j − 1)th data unit and the required period given by the
rate requirementrreq of the application. As shown in Fig-
ure 9, the fraction of delivered data units that did not arrive
in a timely manner, is small.

Data Units Delivered Out Of Order: Figure 10 shows
the fraction of data units that were delivered out of order
(i.e., later than at least one of the data units produced in
their succession). This number remains low for all the al-
gorithms. The minimum cost algorithm is shown to per-
form at least the same as the greedy composition approach.
In many cases, it is twice as good as greedy. The ran-
dom composition algorithm is up to4 times worse than the
other solutions, having up to4% of the data units delivered
out of order. The performance of both greedy and random
is shown to improve when the required application rate is
200Kb/sec. This is because greedy and random execute
few of the requested applications, due to their inability to
compose many of them.

Average Jitter: Jitter is presented in a stream processing
application when a unit of a stream arrives at the destination
later than the deadline set by the arrival of the data unit pre-
ceding it and the period set by the rate requirements. Jitter
is the amount of time by which the data unit was delayed
in respect to this deadline. It is undesirable, since it drops

the requested rate and usually, it has annoying effects to the
resulting stream delivered at the destination. Jitter is a met-
ric of high consideration when designing video and other
media streaming systems. In Figure 11, we can see that the
minimum cost composition results in a system that presents
3 to 10 times less jitter than the random approach and 4 to
8 times times less than the greedy approach.

5 Related Work

Component Middleware: During the past few years,
substantial effort has focused on developing standards-
based component-oriented middleware such as OMG’s
CORBA [18], Sun’s Enterprise JavaBeans [24] and Mi-
crosoft’s COM [17]. These simplify the development of
platform-interoperable, vendor-independent and language-
neutral applications. Recently, Model Driven Development
techniques and tools have been integrated with component
middleware technologies to develop formally analyzable
and verifiable building block components[9]. Component-
based architectures are employed more and more often in
the development of distributed applications [13, 21, 27, 26].

Similar to our work, a component system is presented in
[27] to meet real-time specifications given by the user. In
[26], the authors use an informed branch-and-bound algo-
rithm employing a competence function and forward check-
ing to expedite its execution. Both these algorithms are
centralized and meant to be run off-line. We aim for opti-
mal resource allocation, that is efficient and can be is based
on current system conditions and application requirements.
Also, our system is designed to address the demands of
stream processing applications. In the QuO project, mech-
anisms for providing dynamic QoS support for component-
based applications have been proposed [23]. However, they
mainly focus on assembling and configuring these compo-
nents to enable adaptive QoS management. Our algorithms
can be implemented over their components.

Streaming Applications: Recent efforts have studied the
problem of resource allocation in distributed stream pro-
cessing environments [13, 15, 28]. Most optimal service
composition is accomplished in [13], using a probing pro-
tocol and coarse-grained global knowledge. The objective
is to achieve the best load balancing among the nodes of the
system, while keeping the QoS within requirements of the
user. Our work targets fully utilizing the given resources
of the system in order to maximize the QoS of the offered
services, with the resource constraints of the nodes in mind.
We have previously investigated different aspects of over-
lays for distributed applications. In [3] we have focused
on the task scheduling algorithm, while in [4] we have de-
scribed a decentralized media streaming and transcoding ar-
chitecture. In [21], we considered re-using components in



order to improve overall efficiency.
Recent research efforts have investigated the use of peer-

to-peer overlays for media streaming support. The service
graph construction has been the focus of works like Spi-
derNet [12] and PROMISE [14]. SpiderNet uses a probing
protocol to setup the service graph, while in PROMISE a
receiver selects senders based on characteristics such as the
offered rate, the availability, the available bandwidth, and
the loss rate. The performance of these methods can be fur-
ther increased by incorporating RASC.

6 Conclusions

In this paper we have studied the problem of dynamic
rate allocation for distributed stream processing applica-
tions in large-scale overlays. We have proposed a dynamic
composition algorithm that selects application components
dynamically, while considering the rate requirement of the
application, the resource availability and the number of data
units that have missed their deadlines. We have imple-
mented our distributed stream processing technique on the
PlanetLab testbed. Our experimental results demonstrate
the efficiency, scalability and performance of our approach.
For our future work, we intend to study the performance of
our approach under multiple resource constraints.
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