
MicroHash: An Efficient Index Structure for
Flash-Based Sensor Devices

Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dimitrios Gunopulos, Walid A. Najjar
Dept. of Computer Science Dept. of Computer Science & Engineering

University of Cyprus University of California, Riverside
dzeina@cs.ucy.ac.cy {slin,vana,dg,najjar}@cs.ucr.edu

Abstract

In this paper we propose theMicroHashindex, which is
an efficient external memory structure forWireless Sen-
sor Devices (WSDs). The most prevalent storage medium
for WSDsis flash memory. Our index structure exploits
the asymmetric read/write and wear characteristics of
flash memory in order to offer high performance index-
ing and searching capabilities in the presence of a low
energy budget which is typical for the devices under dis-
cussion. A key idea behindMicroHashis to eliminate ex-
pensive random access deletions. We have implemented
MicroHash in nesC, the programming language of the
TinyOS [7] operating system. Our trace-driven experi-
mentation with several real datasets reveals that our in-
dex structure offers excellent search performance at a
small cost of constructing and maintaining the index.

1 Introduction

The improvements in hardware design along with the
wide availability of economically viable embedded sen-
sor systems enable researchers nowadays to sense envi-
ronmental conditions at extremely high resolutions. Tra-
ditional approaches to monitor the physical world in-
clude passive sensing devices which transmit their read-
ings to more powerful processing units for storage and
analysis.Wireless Sensor Devices (WSDs)on the other
hand, are tiny computers on a chip that is often as small
as a coin or a credit card. These devices feature a low fre-
quency processor (≈4-58MHz) which significantly re-
duces power consumption, a small on-chip flash mem-
ory (≈32KB-512KB) which can be used as a temporary
local storage medium, a wireless radio for communica-
tion, on-chip sensors, and an energy source such as a set
of AA batteries or solar panels [13]. This multitude of
features constituteWSDs powerful devices which can
be used for in-network processing, filtering and aggre-
gation [11, 12, 16]. Large-scale deployments of sensor

network devices have already emerged in environmental
and habitant monitoring [13, 15], seismic and structural
monitoring [24], factory and process automation and a
large array of other applications [11, 12, 16].

In long-term deployments, it is often cheaper to keep
a large window of measurements in-situ (at the generat-
ing site) and transmit the respective information to the
user only when requested (this is demonstrated in Sec-
tion 2.4). For example, biologists analyzing a forest are
usually interested in the long-term behavior of the en-
vironment. Therefore the sensors are not required to
transmit their readings to asink (querying node) at all
times. Instead, the sensors can work unattended and store
their reading locally until certain preconditions are met,
or when the sensors receive a query over the radio that
requests the respective data. Such in-network storage
conserves energy from unnecessary radio transmissions,
which can be used to increase the sampling frequency of
the data and hence the fidelity of the measurements in
reproducing the actual physical phenomena and prolong
the lifetime of the network.

Currently, the deployment of the sensor technology
is severely hampered by the lack of efficient infrastruc-
ture to store locally large amounts of sensor data mea-
surements. The problem is that the local RAM mem-
ory of the sensor nodes is both volatile and very lim-
ited (≈2KB-64KB). In addition, the non-volatile on-chip
flash memory featured by most sensors is also very lim-
ited (≈32KB-512KB). However the limited local storage
of sensor devices is expected to change soon. Several
sensor devices, such as the RISE [1] hardware platform,
include off-chip flash memory which supplements each
sensor with several megabytes of storage. Flash mem-
ory has a number of distinct characteristics compared to
other storage media: First, each page (typically 128B-
512B) can only be written a limited number of times
(≈10,000-100,000). Second, pages can only be written
after they have been deleted in their entirety. However, a
page deletion always triggers the deletion of its respec-

tive block (≈8KB-64KB per block). Due to these fun-
damental constraints, efficient storage management be-
comes a challenging task.

The problem that we investigate in this paper is how
to efficiently organize the data locally on flash memory.
Our desiderata are:

1. To provide efficient access to the data stored on
flash bytime or value, for equalityqueries gener-
ated by the user.

2. To increase thelongevityof the flash memory by
spreading page writes out uniformly so that the
available storage capacity does not diminish at par-
ticular regions of the flash media.

We propose theMicroHash index, which serves as a
primitive structure for efficiently indexing temporal data
and for executing a wide spectrum of queries. Note that
the data generated by sensor nodes has two unique char-
acteristics: i) Records are generated at a given point
in time (i.e. these are temporal records), and ii) The
recorded readings are numeric values in a limited range.
For example a temperature sensor might only record val-
ues between -40F to 250F with one decimal point pre-
cision. Traditional indexing methods used in relational
database systems are not suitable as these do not take
into account the asymmetric read/write behavior of flash
media. Our indexing techniques have been designed for
sensor nodes that feature large flash memories, such as
the RISE [1] sensor, which provide them with several
MBs of storage. MicroHash has been implemented in
nesC [6] and uses the TinyOS [7] operating system.
In this paper we make the following contributions:

1. We propose the design and implementation of Mi-
croHash, a novel index structure for supporting
equality queries in sensor nodes with limited pro-
cessing capabilities and a low energy budget.

2. We present efficient algorithms for inserting, delet-
ing and searching data records stored on flash.

3. We describe the prototype implementation of Mi-
croHash in nesC [6], and demonstrate the efficiency
of our approach with an extensive experimental
study using atmospheric readings from the Univer-
sity of Washington [21] and the Great Duck Island
study [15].

2 The Memory Hierarchy

In this section we briefly overview the architecture of a
sensor node, with a special focus on its memory hierar-
chy. We also study the distinct characteristics of flash
memory and address the challenges with regards to en-
ergy consumption and access time.

MicroControllerUnit

Processor

~4-58MHz

SRAM

~8KB-64KB

Onchip Flash

~32KB-512KB

Radio

LEDS

Sensors

Power

(AA, Solar)

External

Flash

SPI Bus

500KBps

- 3MBps

Figure 1:The Architecture of a typical Wireless Sensor.

2.1 System Architecture

The architecture of a sensor node (see Figure 1), consists
of a microcontroller unit (MCU) which is interconnected
to the radio, the sensors, a power source and the LEDs.
The MCU includes a processor, a static RAM (SRAM)
module and an on-chip flash memory. The processor runs
at low frequencies (≈4-58MHz) which reduces power
consumption. The SRAM is mainly used for code ex-
ecution while in the latest generation of sensors, such
as Yale’s 58MHz XYZ node [10] and the Intel’s 12MHz
iMote (http://www.intel.com), it can also be used forin-
memory(or SRAM) buffering. The choice of the right
energy source is application specific. Most sensors ei-
ther deploy a set of AA batteries or solar panels [13].
Therefore a sensor node might have a very long lifetime.

The on-chip flash provides a small non-volatile storage
area (32KB-512KB) for storing the executable code or
for accumulating values for a small window of time [11].
A larger external storage can also be supplemented to a
sensor using theSerial Peripheral Interface (SPI)which
is typically found on these devices. For example in the
RISEplatform, nodes feature a larger off-chip flash mem-
ory which provides the sensor with several MBs of stor-
age. The external flash memory is connected to the MCU
through a Serial Peripheral Interface (SPI), that oper-
ates at a fraction of the CPU frequency (e.g.cpufreq

8
).

Therefore a faster processor would increase the maxi-
mum throughput of the SPI interface.

Although it is currently not clear whether Moore’s
Law will apply to the size and price of the sensor units
or their hardware characteristics, we believe that future
sensor nodes will feature more SRAM and flash storage,
as more complex in-network processing applications, in-
crease the memory and potentially the CPU demand.

2.2 Overview of Flash Memory

Flash Memory is the most prevalent storage media used
in current sensor systems because of its many advantages
including: i) non-volatile storage, ii) simple cell archi-
tecture, which allows easy and economical production,

iii) shock-resistance, iv) fast read access and power ef-
ficiency. These characteristics establish flash memory
as an ideal storage media for mobile and wireless de-
vices [3].

There are two different types of flash memory,NOR
flash and NAND flash, which are named according to
the logic gate of their respective storage cell. NAND
flash is the newer generation of flash memory which is
characterized by faster erase time, higher durability and
higher density. NOR is an older type of flash which is
mainly used for code storage (e.g. for the BIOS). Its main
advantage is that it supports writes at a byte granular-
ity as opposed to page granularity used in NAND flash.
NOR flash has also faster access time (i.e.≈200ns) than
NAND (50-80µs) but lacks in all other characteristics
such as density and power efficiency.

For the rest of the paper we will focus on the charac-
teristics of NAND memory as this is the type of mem-
ory used for the on-chip and off-chip flash of most sen-
sors including the RISE platform. According to Micron
(http://www.micron.com/), NAND memory is the fastest
growing memory market in 2005 ($8.7 billion). NAND
flash features a number of distinct constraints which can
be summarized as following:

1. Read-Constraint: Reading data stored on flash
memory can be performed at granularities ranging
from a single byte to a whole block (typically 8KB-
64KB).

2. Delete-Constraint: Deleting data stored on flash
memory can only be performed at a block granular-
ity (i.e. 8KB-64KB).

3. Write-Constraint: Writing data can only be per-
formed at a page granularity (typically 256B-512B),
after the respective page (and its respective 8KB-
64KB block) has been deleted.

4. Wear-Constraint: Each page can only be writ-
ten a limited number of times (typically 10,000-
100,000).

The design of our MicroHash index structure in Sec-
tion 5, considers the above constraints.

2.3 Access Time of NAND Flash

Table 1, presents the average measurements that we ob-
tained from a series of micro-benchmarks using theRISE
platform along with a HP E3630A constant 3.3V power
supply and a Fluke 112 RMS Multimeter. The first ob-
servation is that reading is three orders of magnitude less
power demanding than writing. On the other hand, block
erases are also quite expensive but can be performed
much faster than the former two operations. Note that

NAND Flash installed on a Sensor Node
PageRead PageWrite Block Erase

1.17mA 37mA 57mA
Time 6.25ms 6.25ms 2.26ms

Data Rate 82KBps 82KBps 7MBps
Energy 24µJ 763µJ 425µJ

PageErase-Write FlashIdle FlashSleep
43mA 0.068mA 0.031mA

Time 6.75ms N/A N/A
Data Rate 76KBps N/A N/A
Energy 957µJ 220µJ/sec 100µJ/sec

Table 1: Performance Parameters for NAND Flash using a
3.3V voltage, 512B Page size and 16KB Block size

read and write operations involve the transfer of data be-
tween the MCU and the SPI bus, which becomes the bot-
tleneck in the time to complete the operation. Specif-
ically, reading and writing on flash media without the
utilization of the SPI bus can be achieved in≈50µ and
≈200µs respectively [22]. Finally, our results are com-
parable to measurements reported for the MICA2 mote
in [2] and the XYZ sensor in [10].

Although these are hardware details, the application
logic needs to be aware of these characteristics in order
to minimize energy consumption and maximize perfor-
mance. For example, the deletion of a 512B page will
trigger the deletion of a 16KB block on the flash mem-
ory. Additionally the MCU has to re-write the rest unaf-
fected 15.5KB. One of the objectives of our index design
is to provide an abstraction which hides these hardware
specific details from the application.

2.4 Energy Consumption of NAND Flash

Another question is whether it is cheaper to write to flash
memory rather than transmitting over the RF radio. We
used the RISE mote to measure the cost of transmitting
the data over a 9.6Kbps radio (at 60mA), and found that
transmitting 512B (one page) takes on average 416ms
or 82,368µJ. Comparing this with the 763µJ required for
writing the same amount of data to local flash, along with
the fact that transmission of one byte is roughly equiv-
alent to executing 1120 CPU instructions, makes local
storage and processing highly desirable.

A final question we investigated is how many bytes
we can store on local flash before a sensor runs out of
energy. Note that this applies only to the case where the
sensor runs on batteries. Double batteries (AA) used in
many current designs operate at a 3V voltage and sup-
ply a current of 2500 mAh (milliAmp-hours). Assuming
similarly to [15], that only 2200mAh is available and
that all current is used for data logging, we can calcu-

late that AA batteries offer23, 760J (2200mAh * 60 *
60 * 3). With a 16KB block size and a 512B page size,
we would have one block delete every 32 page writes
(16KB/512B). Writing a page, according to our mea-
surements, requires 763µJ while the cost of performing a
block erase is 425µJ. Therefore writing 16KB requires:

Write16KB =(32 pages ∗ 763µJ)
︸ ︷︷ ︸

write cost

+ (425µJ)
︸ ︷︷ ︸

block erase cost

=24, 841µJ

Using the result from the above equation, we can de-
rive that by utilizing the23, 760J offered by the batter-
ies, we can write≈15GB before running out of batteries
((23,760J * 16KB) / 24,841µJ). An interesting point is
that even in the absence of a wear-leveling mechanism
we would be able to accommodate the 15GB without ex-
hausting the flash media. However this would not be true
if we used solar panels [13], which provide a virtually
unlimited power source for each sensor device. Another
reason why we want to extend the lifetime of the flash
media is that the batteries of a sensor node could be re-
placed in cases where the devices remain accessible.

3 Problem Definition

In this section we provide a formal definition of the in-
dexing problem that the MicroHash index addresses. We
also describe the structure of the MicroHash index and
explain how it copes with the distinct characteristics of
flash memory.

Let S denote some sensor that acquires readings from
its environment everyǫ seconds (i.e.t = 0, ǫ, 2ǫ, ...).
At each time instancet, the sensorS obtains a temporal
data recorddrec = {t, v1, v2, ..., vx}, wheret denotes
the timestamp (key) on which the tuple was recorded,
while vi (1 ≤ i ≤ x) represents the value of some read-
ing (such as humidity, temperature, light and others).

Also let P = {p1, p2, ..., pn} denote a flash media
with n available pages. A page can store a finite num-
ber of bytes (denoted aspsize

i), which limits the capacity
of P to

∑n

i=0
psize

i . Pages are logically organized inb
blocks{block1, block2, ..., blockb}, each block contain-
ing n/b consecutive pages. We assume that pages are
read on a page-at-a-time basis and that each pagepi can
only be deleted if its respective block (denoted aspblock

i)
is deleted as well (write/delete-constraint). Finally due
to the wear-constraint, each page can only be written a
limited number of times (denoted aspwc

i).
The MicroHash index supports efficientvalue-based

equality queriesand efficienttime-based equalityand
rangequeries. These queries are defined as follows:

Definition 1. Value-Based Equality Queries: A One
dimensional queryQ(vi, a) in which the field values of
attributevi are equivalent to valuea.

For example the queryq=(temperature, 95F) can be
used to find time instances (ts) and other recorded read-
ings when the temperature was 95F.

Definition 2. Time-Based Range and Equality
Queries: A range query is a one dimensional query
Q(t, a, b) in which the time attributet, is between the
lower and upper bounda andb respectively. The equal-
ity query is a special case of the range queryQ(t, a, b)
in whicha = b.

For example the queryq=(ts, 100, 110) can be used to
find the tuples recorded in the 10 second interval.

Evaluating the above queries efficiently requires that
the system maintains an index structure along with the
generated data. Specifically, while a node senses data
from its environment (i.e. data records), it also creates in-
dex entries that point to the respective data stored on the
flash media. When a node needs to evaluate some query,
it uses the index records to quickly locate the desired
data. Since the number of index records might be po-
tentially very large, these are stored on the external flash
as well. Although maintaining index structures is a well
studied problem in the database community [4, 9, 19], the
low energy budget of sensor nodes along with the unique
read, write, delete and wear constraints of flash memory
introduce many new challenges. In order to maximize
efficiency our design objectives are as follows:

1. Wear-Leveling: Spread page writes out uniformly
across the storage mediaP in order to avoid wear-
ing out specific pages.

2. Block-Erase: Minimize the number ofrandom-
access deletionsas the deletion of individual pages
triggers the deletion of the whole respective block.

3. Fast-Initialization: Minimize the size of in-
memory (SRAM) structures that will be required in
order to use the index.

4 MicroHash Data Structures

In this section we describe the data structures created in
the fast but volatile SRAM to provide an efficient way
to access data stored on the persistent but slower flash
memory. First we describe the underlying organization
of data on the flash media and then describe the involved
in-memory data structures.

4.1 Flash Organization

MicroHash uses a Heap Organization, in which records
are stored on the flash media in a circular array fashion.

This allows data records to be naturally sorted based on
their timestamp and therefore our organization isSorted
by Timestamp. This organization requires the least over-
head in SRAM (i.e. only one data write-out page). Addi-
tionally, as we will show in Section 5.4, this organization
addresses directly the delete, write and wear constraint.
When the flash media is full we simply delete the next
block following idx. Although other organizations in re-
lational database systems, such asSortedor Hashedon
some attribute could also be used, they would have a pro-
hibitive cost as the sensor would need to continuously
update written pages (i.e. perform an expensive random
page write). On the other hand, our Heap Flash Organi-
zation always yields completely full data pages as data
records are consecutively packed on the flash media.

4.2 In-Memory (SRAM) Data Structures

The flash media is segmented inton pages, each with a
size of 512B. Each page consists of a 8Bheaderand a
504Bpayload.

Specifically theheader includes the following fields
(also illustrated in Figure 2):
i) A 3-bit Page Type (TYP)identifier, used to for the dif-
ferent types of pages (data, index, directory and root).
ii) A 16-bit Cyclic Redundancy Checking (CRC)poly-
nomial on the payload, which can be used for integrity
checking. iii) A 7-bitNumber of Records (SIZ), which
identifies how many records are stored inside a page.
We use fixed size records because records generated by
a sensor always have the same size. iv) A 23-bitPrevi-
ous Page Address (PPA), stores the address of some other
page on the flash media giving in that way the capability
to create linked lists on the flash. v) A 15-bitPage Write
Counter (PWC), which keeps the number of times a page
has been written to flash.

While the header is identical for any type of page, the
payloadcan store four different types of information:
i) Root Page: contains information related to the state of
the flash media. For example it contains the position of
the last write (idx), the current cycle (cycle) and meta-
information about the various indexes stored on the flash
media. ii)Directory Page: contains a number of direc-
tory records (buckets) each of which contains the address
of the last known index page mapped to this bucket. In
order to form larger directories several directory pages
might be chained using the 23-bit PPA address in the
header. iii)Index Page: contains a fixed number of index
records and the 8 byte timestamp of the last known data
record. The latter field, denoted asanchor is exploited
by timestamp searches which can make an informed de-
cision on which page to follow next. Additionally, we
evaluate two alternative index record layouts. The first,
denoted asoffsetlayout, maintains for each data record

typedef struct Page {
uint8_t typ:3;
uint16_t crc:16;
uint16_t pwc:15;
uint8_t siz:7;
uint32_t ppa:23;
union {
RootP rootP;
DirP dirP;
IdxP idxP;
DataP dataP;

};
} __attribute__((packed));

typedef struct IdxP {
// optional anchor
uint64_t lastTS;
IdxRec records[IREC];

} __attribute__((packed));

typedef struct DataP {
DataRec records[DREC];

} __attribute__((packed));

typedef struct DataRec {
timestamp_t ts;
data_t val1;

} __attribute__((packed));

typedef struct IdxRec {
fladdress_t datap;
// optional offset
floffset_t offset;

} __attribute__((packed));

Figure 2: Main data structures used in our nesC imple-
mentation of the MicroHash Index.

a respective pageid and offset, while the second layout,
denoted asnooffset, maintains only the pageid of the re-
spective data record. iv)Data Page: contains a fixed
number of data records. For example when the record
size is 16B then each page can contain 31 consecutively
packed records.

5 Indexing in MicroHash

The MicroHash index is an efficient external-memory
structure designed to support equality queries in sensor
nodes that have limited main memory and processing ca-
pabilities. AMicroHash index structure consists of two
substructures: i) ADirectoryand ii) a set ofIndex Pages.
TheDirectory consists of a set of buckets. Each bucket
maintains the address of the newest (chronologically) in-
dex page that maps to that bucket. TheIndex Pagescon-
tain the addresses of the data records that map to the re-
spective bucket. Note that there might be an arbitrar-
ily large number of data and the index pages. Therefore
these pages are stored on the flash media and fetched into
main memory only when requested.

TheMicroHash index is built while data is being ac-
quired from the environment and stored on the flash me-
dia. In order to better describe our algorithm we divide
its operation in four conceptual phases:a) The Initial-
ization Phasein which the root page and certain parts
of the directory are loaded into SRAM,b) The Grow-
ing Phasein which data and index pages are sequentially
inserted and organized on the flash media,c) The Repar-
tition Phasein which the index directory is re-organized
such that only the directory buckets with the highest hit
ratio remain in memory, and thed) The Deletion Phase
which is triggered for garbage collection purposes.

5.1 The Initialization Phase

In the first phase the MicroHash index locates the root
page on flash media. In our current design, the root page
is written on a specific page on flash (page0). If page0
is worn out, we recursively use the next available page.
Therefore a few blocks are pre-allocated at the beginning
of the flash media for the storage of root pages. The root

page indicates what type of indexes are available on the
system and the addresses of their respective directories.
Given that an application requires the utilization of an
index I, the system pre-loads part ofI ′s directory into
SRAM (detailed discussion follows in Section 5.3). The
root and directory pages then remain in SRAM, for effi-
ciency, and are periodically written out to flash.

5.2 The Growing Phase

Let us assume that a sensor generates a temporal record
drec = {t, v1, v2, ..., vx} every ǫ seconds, wheret is
the timestamp on which the record was generated andvi

(1 ≤ i ≤ x) some distinct reading (e.g. humidity, tem-
perature, etc). Instead of writingdrec directly to flash,
we use an in-memory (SRAM) buffer pagepwrite. When
pwrite gets full it is flushed to the addressidx, whereidx
denotes the address after the last page write. Note that
idx starts out as zero and this counter is incremented by
one every time a page is written out. Whenidx becomes
equal to the size of the flash median, it is reset to zero.
In order to provide a mechanism for finding the relative
chronological order of pages written on the flash media,
we also maintain the countercycle, which is incremented
by one every timeidx is reset to zero. The combination
of the<cycle, pageid> provides this mechanism.

Next we describe how index records are generated and
stored on the flash media. The index records in our
structure are generated whenever thepwrite gets full. At
this point we can safely determine the physical address
of the records inpwrite (i.e. idx). We create one in-
dex recordir = [idx, offset] for each data record in
pwrite (∀drec ∈ pwrite). For example assume that we
insert the following 12 byte[timestamp, value] records
into an emptyMicroHashindex: {[1000,50], [1001,52],
[1002,52]}. This will trigger the creation of the follow-
ing index records:{ [0,0],[0,12],[0,24]}. Sincepwrite

is written to addressidx the index records always ref-
erence data records that have a smaller<cycle,pageid>
identifier.

The MicroHash Directoryprovides the start address
of the index pages. It is constructed by providing the fol-
lowing three parameters: a) A lower bound (lb) on the
indexed attribute, b) an upper bound (ub) on the indexed
attribute and the number of available bucketsc (note that
we can only fit a certain number of directory buckets in
memory). For example assume that we index temper-
ature readings which are only collected in the follow-
ing known and discrete range[−40..250], then we set
lb = −40F , ub = 250F andc = 100. Initially each
bucket represents exactly|lb..ub|

c
consecutive values al-

though this equal splitting (which we callequiwidth split-
ting) is refined in the repartition phase based on the data
values collected at run-time.

Directory

s=0

c=0

[0-10]

[10-20]

[20-30]

[30-40]

s=0

c=0

s=1

c=3

s=2

c=1

Directory
 Index Pages

s=0

c=0

[0-10]

[10-15]

[20-30]

[30-40]

s=0

c=0

s=1

c=0

s=2

c=1

after

s=3

c=1
[15-20]

evicted to flash

A:

A1:

B:

Figure 3: The Repartition Phase.

5.3 The Repartition Phase

A drawback of the initialequiwidth bucketsplitting ap-
proach is that some buckets may rarely be used while
others may create long lists of index records. To over-
come this problem, we use the following splitting pol-
icy: Whenever a directory bucketA links to more thanτ
records (user parameter), we evict to flash the bucketB,
which was not used for the longest period of time. Note
that this mechanism can be implemented using only two
counters per bucket (one for the timestamp and one for
the number of records). In addition to the eviction of
pageB, we also create a new bucketA1. Our objec-
tive is to provide a finer granularity to the entries inA
as this bucket is the most congested one. Note that the
values inA are not reassigned betweenA andA1 as it
would happen in dynamic hashing techniques, such as
extendible hashing[4] or linear hashing[9]. The reason
is that the index pages are on the flash media and updat-
ing these pages would result in a potentially very large
number of random updates (which would be extremely
expensive). Ourequidepth, rather than equiwidth, bucket
splitting approach keeps in memory finer intervals for in-
dex records used more frequently.

Figure 3 shows that each bucket is associated with a
counters, that indicates the timestamp of the last time
the buffer was used, and a counterc that indicates the
number of index records added since the last split. In the
example, thec = 3 value in bucket 2 (A:[10-20]) exceeds
theτ = 2 threshold and therefore the index forces bucket
4 (B:[30-40]) to the flash media while bucket two is split
into A:[10-15] and A1:[15-20]. Note that theA list now
contains values in [10-20] while theA1 list contains only
values in the range [15-20].

5.4 The Deletion Phase

In this phase the index performs a garbage collection op-
eration of the flash media in order to make space for new
data. The phase is triggered after alln pages have been
written to the flash media. This operation blindly deletes
the nextn/b pages (the whole next block starting atidx).
It is then triggered again whenevern/b pages have been
written, whereb is the number of blocks on the flash
media. That leaves the index withn/b clean pages that

can be used for future writes. Note that this might leave
pointers from index pages referencing data that is already
deleted. This problem is handled by our search algorithm
described in the next section.

The distinct characteristic of our garbage collection
operation is that it satisfies directly the delete-constraint,
because pages are deleted in blocks (which is cheaper
than deleting a page-at-a-time). This makes it differ-
ent from similar operations of flash file systems [2, 17]
that perform page-at-a-time deletions. Additionally, this
mode provides the capability to ”blindly” delete the next
block without the need to read or relocate any of the
deleted data. The correctness of this operation is estab-
lished by the fact that the index records always reference
data records that have a smaller<cycle,pageid> identi-
fier. Therefore when an index page is deleted then we are
sure that all associated data pages are already deleted.

6 Searching in MicroHash

In this section we show how records can efficiently be
located by their value or timestamp.

6.1 Searching by Value

The first problem we consider is how to performvalue-
based equality queries. Finding records by their value
involves: a) locating the appropriate directory bucket,
from which the system can extract the address of the last
index page, b) reading the respective index pages on a
page-by-page basis and c) reading the data records re-
ferred by the index pages on a page-by-page basis. Since
SRAM is extremely limited on a sensor node we adopt
a record-at-a-timequery return mechanism, in which
records are reported to the caller on record-by-record
basis. This mode of operation requires three available
pages in SRAM, one for the directory (dirP) and two for
the reading (idxP,dataP), which only occupies 1.5KB. If
more SRAM was available, the results could have been
returned at other granularities as well. The complete
search procedure is summarized in Algorithm 1.

Note that the loadPage procedure in line 4 and 6 re-
turns NULL if the fetched page is not in valid chrono-
logical order (with respect to its preceding page) or, if
the data records, in data pages, are not within the spec-
ified bucket range. This is consequence of the way the
garbage collector operates, as it does not update the index
records during deletions for performance reasons. How-
ever, these simple checks applied by loadPage ensure that
we can safely terminate the search at this point. Finally,
since the MicroHash index returns records on a record-
at-a-time basis, we use a finalsignal finishedwhich no-
tifies the application that the search procedure has been
completed.

Algorithm 1 EqualitySearch
Input: value: the query (search predicate).
Output: The records that containsvalue.

1: procedure EQUALITY SEARCH(value)
2: bucket = hash(value);
3: address = dirP [bucket].idxP ;
4: while ((idxP = loadPage(address)) != NULL) do
5: for i = 0 to |idxP.size| do
6: If ((dataP=loadPage(idxP[i].dataP))==NULL)
7: address=0; break;
8: If (dataP.record[idxP[i].offset]==value)
9: signal dataP.record[idxP[i].offset];

10: end for
11: address = idxP.ppp;
12: end while
13: signalfinished;
14: end procedure

6.2 Searching by Timestamp

In this section we investigatetime-based equality and
range queries. First, note that if index pages were stored
in a separate physical location, and thus not interleaved
with data pages, the sorted (by timestamp) file organiza-
tion would allow us to access any data record inO(1)
time. However, this would also violate our wear level-
ing mechanism as we wouldn’t be able to spread out the
page writes uniformly among data and index pages. An-
other approach would be to deploy an in-memory address
translation table, such as the one used in [22] and [23],
which would hide the details of wear-leveling mecha-
nism. However, such a structure might be too big given
the memory constraints of a sensor node and would also
delay the sensor boot time.

Efficient search can be supported by a number of dif-
ferent techniques. One popular technique is to perform
a binary search over all pages stored on the flash media.
This would allow us to search inO(logn) time, where
n is the size of the media. However, for large values of
n such a strategy is still expensive. For example with a
512MB flash media and a page size of 512B we would
need approximately 20 page reads before we find the ex-
pected record.

In our approach we investigate two binary search vari-
ants named:LBSearchandScaleSearch. LBSearchstarts
out by setting a pessimistic lower bound on which page
to examine next, and then recursively refines the lower
bound until the requested page is found.ScaleSearch
on the other hand exploits knowledge about the underly-
ing distribution of data and index pages in order to offer
a more aggressive search method that usually executes
faster. ScaleSearch is superior to LBSearch when data
and index pages are roughly uniformly distributed on the
flash media but its performance deteriorates for skewed
distributions.

LBSearch + Anchors

LBSearch + No Anchors

t
s

t
e

t
q
 t
q'
 t
q''
t
q'''

t
e

t
q
shift
 shift
t
q'
 t
q''
t
s

ScaleSearch + Anchors

ScaleSearch + No Anchors

t
s

t
e

t
q
 t
q'
 t
q''
t
q'''

t
e

t
q
shift
 shift
t
q'
 t
q''
t
s

scale

scale
 lb
 lb

lb

lb
 lb
 lb

lb
 lb
lb
lb

Figure 4: Searching By Timestamp.ts: oldest timestamp
on flash (te: newest),tq: the query (timestamp),lb: The
lower bound obtained using eitheridxlb or idxscaled.

For the remainder of this section we assume that a sen-
sorS maintains locally some indexed readings for the in-
terval [ta..tb]. Also let x < y (andx > y) denote that
the<cyclex, idxx> pair ofx is smaller (and respectively
greater) than the<cycley, idxy> of y. WhenS is asked
for a record with the timestamptq, it follows one of the
following approaches:

i) LBSearch: S starts out by setting the lower bound :

idxlb(tq, ts) =







⌈
tq−ts

ℜ

⌉

, if cycle==0;

idx +
⌈

tq−ts

ℜ

⌉

, otherwise.

whereidx is the address of the last written page andℜ a
constant indicating the maximum number of data records
per page. It then deploys theLBSearch(ts, idxlb) pro-
cedure as illustrated in Algorithm 2. It is easy to see that
in each recursion step, LBSearch always moves clock-
wise (increasing time order) and thatidxlb ≤ idxtq

.

Algorithm 2 LBSearch (No Anchors)
Input: tq: the query (timestamp),current: begin search ad-
dress
Output: The page that containstq.

1: procedure LBSEARCH(tq, current)
2: p = readPage(current);
3: if (isIndexPage(p)) then
4: // logical right shift
5: return LBSearch(tq, current + 1);
6: else
7: t1 = P.record[0].ts;
8: t2 = P.record[P.lbu].ts;
9: if (t1 ≤ tq ≤ t2) then

10: return P ;
11: end if
12: return LBSearch(tq, current+ idxlb(tq, t2));
13: end if
14: end procedure

It is important to note that a lower bound can only
be estimated if the fetched page, on each step of the re-
cursion, contains a timestamp value. Our discussion so

far, assumes that the only pages that carry a timestamp
are data pages which contain a sequence of data records
{[ts1, val1]...[ts1, valℜ]}. In such a case, the LBSearch
has toshiftright until a data page is located. In our exper-
iments we noted that this deficiency could add in some
cases 3-4 additional page reads. In order to correct the
problem we store the last known timestamp inside each
index page (namedAnchor).

ii) ScaleSearch: When index pages are uniformly
spread out across the flash media, then a more aggressive
search strategy might be more effective. InScaleSearch,
which is the technique we deployed inMicroHash, in-
stead of usingidxlb in the first step we useidxscaled:

idxscaled(tq, ts) =







⌈
tq−ta

tb−ta
∗ idx

⌉

, if cycle==0;

idx +
⌈

tq−ta

tb−ta
∗ n

⌉

, otherwise.

We then use LBSearch in order to refine the search.
Note thatidxscaled might in fact be larger thanidxtq

in which case LBSearch might need to move counter-
clockwise (decreasing time order).

Performing a timestamp-based range queryQ(tq, a, b)
is a simple extension of the equality search. More
specifically, we first perform a ScaleSearch for the
upper boundb (i.e. Q(tq, b)) and then sequentially read
backwards untila is found. Note that data pages are
chained in reverse chronological order (i.e. each data
page maintains the address of the previous data page)
and therefore this operation is very simple.

6.3 Search Optimizations

In the basic MicroHash approach, index pages on flash
might not be fully occupied. This incurs a significant
performance penalty when somebody performs a search
by value, because the system has to read in memory more
pages than necessary. In this section we present two al-
ternative methods that alleviate this performance penalty.
The first method, namedElf-Like Chaining (ELC), elim-
inates non-full index pages which as a result decreases
the number of pages required to answer a query, while
the second method, namedTwo-Phase Readminimizes
the number of bytes transferred from the flash media.

6.3.1 Elf-Like Chaining (ELC)

In the MicroHash index, pages are chained using a back-
pointer as illustrated in Figure 5 (namedMicroHash
Chaining). Inspired from the update policy of the ELF
filesystem [2], we also investigate, and later experimen-
tally evaluate, theElf-like Chaining (ELC)mechanism.
The objective ofELC is to create a linked list in which

...

MicroHash Chaining

...
 ...

Elf-Like Chaining

copy

k

copy

k+l

k

copy

l
 ...

p
i
 p
i+3

p
i
 p
i+3

Figure 5: Index Chaining Methods: a) MicroHash
Chaining and b) ELF-like Chaining.

each node, other than the last node, is completely full.
This is achieved by copying the last non-full index page
into a newer page, when new index records are requested
to be added to the index. This procedure continues un-
til an index page becomes full, at which point it is not
further updated.

To better understand the two techniques, consider the
following scenario (see Figure 5): An index page on flash
(denoted aspi (i ≤ n)), containsk (k < psize

i) index
records{ir1, ir2, ..., irk} that in our scenario map to di-
rectory bucketv. Suppose that we create a new data
page on flash at positionpi+1. This triggers the cre-
ation ofl additional index records, which in our scenario
map to the same bucketv. In MicroHash Chaining
(MHC), the buffer manager simply allocates a new in-
dex page forv and keeps the sequence{ir1, ir2, ..., irl}
in memory until the LRU replacement policy forces the
page to be written out. Assuming that the new index se-
quence is forced out of memory atpi+3, thenpi will be
back-pointed bypi+3 as shown in Figure 5. InElf-Like
Chaining (ELC), the buffer manager readspi in mem-
ory and then augments it with thel new index records
(i.e. {ir1, ..., irk, ..., irl+k}). However,pi is not up-
dated due to the write and wear constraint, but instead
the buffer manager writes the newl + k sequence to the
end of the flash media (i.e. atpi+3). Note thatpi is now
not backpointed by any other page and will not be uti-
lized until the block delete, guided by theidx pointer,
erases it.

The optimal compaction degree of index pages in
ELC significantly improves the search performance of
an index as it is not required to iterate over partially full
index pages. However, in the worse case,ELC might in-
troduce an additional page read per indexed data record.
Additionally we observed in our experiments, presented
in Section 8, thatELC requires on average 15% more
space than the typical MicroHash chaining. In the worst
case, the space requirement ofELC might double the
requirement ofMHC.

Consider again the scenario under discussion. This
time assume that the buffer manager readspi in memory

size-k
...

copy

size-k

copy
k
 k
 k

size-k

copy
 k

...

p
i
 p
i+3
 p
i+5

Figure 6: Sequential Trashing in ELC.

and then augmentspsize
i (a full page) new index records

as shown in Figure 6. That will evictpi to some new ad-
dress (in our scenariopi+3). However some additional
psize

i − k records are still in the buffer. Assume that
these pages are at some point evicted from memory to
some new flash position (in our scenariopi+5). So far we
utilized three pages (pi, pi+3 andpi+5) while the index
records could fit into only 2 index pages (i.e.k + psize

i

records,k < psize
i). When the same scenario is repeated,

then we say thatELC suffers fromSequential Trashing
andELC will require double the required space to ac-
commodate all index records.

6.3.2 Two-Phase Page Reads

Our discussion so far assumes that pages are read from
the flash media on a page-by-page basis (usually 512B
per page). When pages are not fully occupied, such as
index pages, then a lot of empty bytes (padding) is trans-
ferred from the flash media to memory. In order to alle-
viate this burden, in [1] we exploit the fact that reading
from flash can be performed at any granularity (i.e. as
small as a single byte). Specifically, we propose the de-
ployment of aTwo-Phase Page Readin which the MCU
reads a fixed header from flash in the first phase, and then
reads the exact amount of bytes in the next phase. We
experimentally evaluated the performance of two-phase
reads versus single phase reads using the RISE sensor
node and found that such an approach significantly min-
imizes energy consumption.

7 Experimental Methodology

In this section we describe the details of our experimental
methodology.

7.1 Experimental Testbed

We have implemented MicroHash along with a tiny LRU
BufferManager in nesC[6], the programming language
of TinyOS[7]. TinyOS is an open-source operating sys-
tem designed for wireless embedded sensor nodes. It
was initially developed at UC-Berkeley and has been de-
ployed successfully on a wide range of sensors including
the RISE mote. TinyOS uses a component-based archi-
tecture that enables programmers to wire together in on-

demand basis the minimum required components. This
minimizes the final code size and energy consumption as
sensor nodes are extremely power and memory limited.
nesC [6] is the programming language of TinyOS and it
realizes its structuring concepts and its execution model.

Our implementation consists of approximately 5000
lines of code and requires at least 3KB in SRAM. Specif-
ically we use one page as a write buffer, two pages for
reading (i.e. one for an index page and one for a data
page), one page as an indexing buffer, one for the direc-
tory and one final page for the root page. In order to
increase insertion performance and index page compact-
ness, we also supplement additional index buffers (i.e.
2.5KB-5KB).

We had to write a library that simulates the flash media
using an operating system file, in order to run our code
in TOSSIM [8], the simulation environment of TinyOS.
We additionally wrote a library that intercepts all mes-
sages communicated from TinyOS to the flash library
and prints out various statistics and one final library that
visualizes the flash media using bitmap representations.

7.2 PowerTOSSIM - Energy Modeling

PowerTOSSIM is a power modeling extension to
TOSSIM presented in [14]. In order to simulate the en-
ergy behavior of the RISE sensor we extended Power-
TOSSIM and added annotations to the MicroHash struc-
ture that accurately provide information when the power
states change in our environment. We have focused our
attention on precisely capturing the flash performance
characteristics as opposed to capturing the precise per-
formance of other less frequently used modules (the ra-
dio stack, on-chip flash, etc).

Our power model follows our detailed measurements
of the RISE platform [1], which are summarized as fol-
lowing: We use a 14.8 MHz 8051 core operating at 3.3V
with the following current consumption 14.8mA (On),
8.2mA (Idle), 0.2µA (Off). We utilize a 128MB flash
media with a page size of 512B and a block size of 16KB.
The current to read, write and block delete was 1.17mA,
37mA and 57µA and the time to read in the three pre-
mentioned states was 6.25ms, 6.25ms, 2.27ms.

Using these parameters, we performed an extensive
empirical evaluation of our power model and found that
PowerTOSSIM is indeed a very useful and quite accu-
rate tool for modeling energy in a simulation environ-
ment. For example we measured the energy required to
store 1 MB of raw data on an RISE mote and found that
this operation requires1526mJ while the same operation
in our simulation environment returned1459mJ , which
has a error of only 5%. On average we found that Pow-
erTOSSIM provided an accuracy of 92%.

7.3 Dataset Descriptions

Since we cannot measure environmental conditions, such
as temperature or humidity in a simulation environment,
we adopt a trace-driven experimental methodology in
which a real dataset is fed into the TOSSIM simulator.
More specifically, we use the following datasets:

Washington State Climate: This is a real dataset of
atmospheric data collected by the Department of Atmo-
spheric Sciences at the University of Washington [21].
Our 268MB dataset contains readings on a minute basis
between January 2000 and February 2005. The readings,
which are recorded at a weather logging station in Wash-
ington, include barometric pressure, wind speed, rela-
tive humidity, cumulative rain and others. Since many
of these readings are not typically measured by sensor
nodes we only index the temperature and pressure read-
ings, and use the rest readings as part of the data included
in a record. Note that this is a realistic assumption, as
sensor nodes may concurrently measure a number of dif-
ferent parameters.

Great Duck Island (GDI 2002): This is a real dataset
from the habitat monitoring project on the Great Duck
Island in Maine [15]. We use readings from one of
the 32 nodes that were used in the spring 2002 deploy-
ment, which included the following readings: light, tem-
perature, thermopile, thermistor, humidity and voltage.
Our dataset includes approximately 97,000 readings that
were recorded between October and November 2002.

8 Experimental Evaluation

In this section we present extensive experiments to
demonstrate the performance effectiveness of the Micro-
Hash Index structure. The experimental evaluation de-
scribed in this section focuses on three parameters: i)
Space Overhead, of maintaining the additional index
pages, ii)Search Performance, which is defined as the
average number of pages accessed for finding the re-
quired record and iii)Energy Consumption, for index-
ing the data records. Due to the design of the MicroHash
index, each page was written exactly once during a cycle.
Therefore there was no need to experimentally evaluate
the wear-leveling performance.

8.1 Overhead of Index Pages

In the first series of experiments we investigate the over-
head of maintaining the additional index pages on the
flash media. For this reason we define the overhead ratio
Φ as follows:Φ = IndexPages

DataPages+IndexPages
. We investi-

gate the parameterΦ using a) An increasing buffer size
and b) An increasing data record size.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2.5 3 3.5 4 4.5 5S
pa

ce
 O

ve
rh

ea
d

 [I
nd

ex
/(

In
de

x+
D

at
a)

] (
%

)

Buffer Size (KB)

Index Space Overhead Ratio
 Varying Buffer Size and fixed 18B record size

Index on Temperature (Offset)
Index on Temperature (noOffset)

Index on Pressure (Offset)
Index on Pressure (noOffset)

 0

 10

 20

 30

 40

 50

 10 12 14 16 18 20 22S
pa

ce
 O

ve
rh

ea
d

 [I
nd

ex
/(

In
de

x+
D

at
a)

] (
%

)

Record Size [8B/TS + 2B/attribute] (bytes)

Index Space Overhead Ratio
 Varying Record Size and fixed 3KB buffer

Index on Temperature (Offset)
Index on Temperature (noOffset)

Index on Pressure (Offset)
Index on Pressure (noOffset)

Figure 7: Space Overhead of Index Pages with a) varying
buffer size and b) varying record size.

We also evaluate two different index record layouts: a)
Offset, in which an index record has the following form
{pageid,offset} andNoOffset, in which an index record
has the form{pageid}. We use the five year timeseries
from the Washington state climate dataset and index data
records based on their temperature and pressure attribute.
The data record on each of the 2.9M time instances was
18 bytes (i.e. 8B timestamp + 5x2B readings).

8.1.1 Increasing Buffer Size

Figure 7 (top) presents our results using a varying buffer.
The figure shows that in all cases a larger buffer helps in
fitting more index records per page which therefore also
linearly reduces the overall space overhead. In both the
pressure and temperature case, thenoOffsetindex record
layout significantly reduces the space overhead as less in-
formation is required to be stored inside an index record.

The figure shows that indexing on pressure achieves
a lower overhead. This is attributed to the fact that the
pressure changes slower than the temperature over time.
This leads to fewer evictions of index pages during the
indexing phase which consequently also increases the in-
dex page occupancy. We found that a 3KB buffer suffices
to achieve occupancy of 75-80% in index pages.

8.1.2 Increasing Data Record Size

Sensor nodes usually deploy a wide array of sensors,
such as a photo sensor, magnetometer, accelerometer
and others. Therefore the data record size on each time
instance might be larger than the minimum 10B size
(8B timestamp and 2B data value). Figure 7 (bottom)
presents our results using a varying data record size. The
figure shows that in all cases a larger data record size
decreases the space overhead proportion. Therefore it
does not become more expensive to store the larger data
records on flash.

8.2 Searching By Timestamp

In the next experimental series, we investigate the aver-
age number of pages that must be read in order to find
a record by its timestamp. We search for 100 times-
tamps selected uniformly at random, from the available
five year range, and then calculate the average number of
pages read. Note that if we did not use an index, and thus
had only data records on the flash, then we could find the
expected record in O(1) time as we could manipulate the
position of the record directly. However, this would also
violate our wear leveling mechanism.

We evaluate the proposed search by timestamp meth-
ods LBSearch and ScaleSearch under two different in-
dex page layouts: a)Anchor, in which every index
page stores the last known data record timestamp and b)
NoAnchor, in which an index page does not contain any
timestamp information.

Figure 8 shows our results using the Washington state
climate dataset for both an index on Temperature (Fig-
ure 8 top) and an Index on Pressure (Figure 8 bottom).
The figures show that using an anchor inside an index
pages is a good choice as it usually reduces the number
of page reads by two, while it does not present a signif-
icant space overhead (only 8 additional bytes). The fig-
ures also show that ScaleSearch is superior to LBSearch
as it exploits the uniform distribution of index pages on
the flash media. This allows ScaleSearch to get closer to
the result, in the first step of the algorithm.

The figures finally show that even though the time
window of the query is quite large (i.e. 5 years or
128MB), ScaleSearch is able to find a record by its times-
tamp in approximately 3.5-5 page reads. Given that a
page read takes 6.25ms, this operation requires accord-
ing to the RISE model only 22-32ms or 84-120µJ.

8.3 Searching by Value: MicroHash
Chaining vs. ELF-Like Chaining

The cost of searching a particular value on the flash me-
dia is linear with respect to the size of the flash me-

 4

 5

 6

 7

 8

 9

 10

 11

 2.5 3 3.5 4 4.5 5

P
ag

es
 R

ea
d

(P
ag

e
S

iz
e

51
2B

)

Buffer Size (KB)

Search By Timestamp Performance (Index on Temperature)

LBSearch + NoAnchor
LBSearch + Anchor

ScaleSearch + NoAnchor
ScaleSearch + Anchor

 3

 3.5

 4

 4.5

 5

 5.5

 2.5 3 3.5 4 4.5 5

P
ag

es
 R

ea
d

(P
ag

e
S

iz
e

51
2B

)

Buffer Size (KB)

Search By Timestamp Performance (Index on Pressure)

LBSearch + NoAnchor
LBSearch + Anchor

ScaleSearch + NoAnchor
ScaleSearch + Anchor

Figure 8: Search-By-Timestamp Performance of the Mi-
croHash Index.

dia. However, a simple linear scan over 256 thousands
pages found on a 128MB flash media, would result in
an overwhelming large search cost. One factor that sig-
nificantly affects search performance is the occupancy of
index pages. In the basic MicroHash approach, index
pages on the flash might not be fully occupied. If index
pages are not fully utilized, then a search would require
iterating over more pages than necessary.

In this section we perform an experimental compar-
ison of the index chaining strategies presented in Sec-
tion 6.3. We evaluate both MicroHash Chaining (MHC)
and Elf-like chaining (ELC) using a fixed 3KB buffer.
We deploy the chaining methods when the temperature
is utilized as the index (we obtained similar results for
pressure). Our evaluation parameters are : a) Indexing
Performance (pages written) and b) Search Performance
(pages read).

Figure 9 (top) shows that MHC always requires less
page writes than ELC. The reason is that ELC’s strat-
egy results in about 15% sequential trashing, which is
the characteristic presented in Section 6.3. Additionally,
ELC requires a large number of page reads in order to
replicate some of the index records. This is presented
in the ELC Total plot, which essentially shows that it
requires as many page reads as page writes in order to
index all records. On the other hand, ELC’s strategy re-
sults in linked lists of fully occupied index pages than
MHC. This has as a result, an improved search perfor-

 0

 1000

 2000

 3000

 4000

 5000

10080604020

P
ag

es

Temperature

Insertion Performance: ELC vs MHC Chaining Histogram

MHC Writes
ELC Writes

ELC Total (Read+Write)

 0

 2000

 4000

 6000

 8000

 10000

10080604020

N
um

be
r

of
 P

ag
e

R
ea

ds
 (

D
at

a+
In

de
x)

Temperature

Search Performance: ELC vs MHC Chaining Histogram

MHC Index Read
MHC Total Read
ELC Index Read
ELC Total Read

Figure 9: Comparing MicroHash Chaining (MHC) with
ELF-like Chaining (ELC) using a) Insertion Performance
and b) Searching Performance by Value.

mance since the system is required to fetch less index
pages during search. This can be observed in Figure 9
(bottom), in which we present the number of index pages
read and the total number of pages (index + data). On the
other hand, we also observe that ELC only reduces the
overall read gain to about 10%. This happens because
the reading of data page, dominates the overall reading
cost. However when searches are more frequent, then
the 10% is still an advantage and therefore ELC is more
appropriate than its counterpart MHC.

8.4 Great Duck Island Trace

In this last experimental series we index measurements
from the great duck island study, described in Sec-
tion 7.3. For this study we allocate a fixed 3KB index
buffer along with a 4MB flash media that has adequate
space to store all the 97,000 20-byte data readings.

In each run, we index on a specific attribute (i.e.
Light, Temperature, Thermopile, Thermistor, Humidity
and Voltage). We then record the overhead ratio of index
pagesΦ, the energy required by the flash media to con-
struct the index as well as the average number of page
reads that were required to find a record by its times-
tamp. We omit the search by value results, due to lack of
space, but the results are very similar to those presented
in the previous subsection.

Index On Overhead Energy ScaleSearch
Attribute Ratio Φ % Index (mJ) Page Reads

Light 26.47 4,134 4.45
Temperature 27.14 4,172 5.45
Thermopile 24.08 4,005 6.29
Thermistor 14.43 3,554 5.10
Humidity 7.604 3,292 2.97
Voltage 20.27 3,771 4.21

Table 2: Performance Results from Indexing and Searching
the Great Duck Island dataset.

Table 2 shows that the index pages never require more
that 30% more space on the flash media. For some read-
ings that do not change frequently (e.g. humidity), we
observe that the overhead is as low as 8%. The table also
shows that indexing the records has only a small increase
in energy demand. Specifically, the energy cost of stor-
ing the records on flash without an index was 3042mJ,
which is on average only 779mJ less than using an index.
Therefore maintaining the index records does not impose
a large energy overhead. Finally the table shows that we
were able to find any record by its timestamp with 4.75
page reads on average.

9 Related Work

There has been a lot of work in the area of query pro-
cessing, in-network aggregation and data-centric storage
in sensor networks. To the best of our knowledge, our
work is the first that addresses the indexing problem on
sensor nodes with flash memories.

A large number of flash-based file systems have been
proposed in the last few years, including the Linux
compatible Journaling Flash File System (JFFS and
JFFS2)[17], the Virtual File Allocation Table (VFAT)
for Windows compatible devices and the Yet Another
Flash File System (YAFFS)[18], specifically designed
for NAND flash with it being portable under Linux,
uClinux, and Windows CE. The first file system for sen-
sor nodes was Matchbox and this is provided as an inte-
gral part of the TinyOS [7] distribution. Recently the Ef-
ficient Log Structured Flash File System (ELF)[2] shows
that it offers several advantages over Matchbox includ-
ing higher read throughput and random access by times-
tamp. Other filesystems for embedded microcontrollers
that utilize flash as a storage medium include the Trans-
actional Flash File System (TFFS) [5]. However the
main job of a file system is to organize the blocks of
the storage media into files and directories and to pro-
vide transaction semantics on these attributes. Therefore
a filesystem does not support the retrieval of records by
their value as we do in our approach.

An R-tree and B-Tree index structure for flash memory
on portable devices, such as PDA’s and cell phones, has
been proposed in [22] and [23] respectively. These struc-
tures use an in-memory address translation table, which
hides the details of wear-leveling mechanism. However,
such a structure has a very large footprint (3-4MB) which
constitutes it inapplicable in the context of microcon-
trollers with limited SRAM.

Wear-Leveling techniques have also been reported by
flash card vendors such as Sandisk [20]. These tech-
niques are executed by a microcontroller which is located
inside the flash card. The Wear-Leveling techniques are
only executed within 4MB zones and are thuslocal rather
than global which is the case in MicroHash. A main
drawback of thelocal wear-leveling techniques is that
the writes are no longer spread out uniformly across all
available pages. Finally these techniques assume a dedi-
cated controller while our techniques can be executed by
the microcontroller of the sensor device.

Systems such as TinyDB[11] and Cougar[16] are op-
timized for sensor nodes with limited storage and rel-
atively shorter-epochs, while our techniques are desig-
nated for sensors with larger external flash memories and
longer epochs. Note that in TinyDB users are allowed
to define fixed size materialization points through the
STORAGE POINT clause. This allows each sensor to
gather locally in a buffer some readings, which cannot
be utilized until the materialization point is created in its
entirety. Therefore even if there was enough storage to
store MBs of data, the absence of efficient access meth-
ods makes the retrieval of the desired values expensive.

10 Conclusions

In this paper we propose theMicroHash index which is
an efficient external memory hash index that addresses
the distinct characteristics of flash memory. We also pro-
vide an extensive study of NAND flash memory when
this is used as a storage media of a sensor device. Our
design can serve several applications, including sensor
and vehicular networks, which generate temporal data
and utilize flash as the storage medium. We expect that
our proposed access method will provide a powerful new
framework to cope with new types of queries, such as
temporal or top-k, that have not been addressed ade-
quately to this date. Our experimental evaluation with
real traces from environmental and habitant monitoring
show that the structure we propose is both efficient and
practical.

Acknowledgements

We would like to thank Joe Polastre (UC Berkeley) for
providing us the Great Duck Island data trace and Victor

Shnayder (Harvard) for his help on the PowerTOSSIM
environment. We would also like to thank Abhishek Mi-
tra and Anirban Banerjee (UC Riverside) for their assis-
tance in the RISE micro-benchmarks. Finally, we would
like to thank our shepherd, Andrea Arpaci-Dusseau, and
the anonymous reviewers for their numerous helpful
comments. This work was supported by grants from NSF
ITR #0220148, #0330481.

References

[1] Banerjee A., Mitra A., Najjar W., Zeinalipour-
Yazti D., Kalogeraki V. and Gunopulos D., “RISE
Co-S : High Performance Sensor Storage and Co-
Processing Architecture”, In IEEE SECON, Santa
Clara, CA, USA, to appear in 2005.

[2] Dai H., Neufeld M., Han R., “ELF: an efficient
log-structured flash file system for micro sensor
nodes”, In SenSys, Baltimore, pp. 176-187, 2004.

[3] Dipert B., Levy M., “Designing with Flash Mem-
ory”, AnnaBooks Publisher, 1994.

[4] Fagin R., Nievergelt J., Pippenger N., Strong
H.R.: “Extendible Hashing - A Fast Access
Method for Dynamic Files”, In ACM TODS, vol
4(3), pp. 315-344, 1979.

[5] Gal E. and Toledo S., “A Transactional Flash File
System for Microcontrollers”, In USENIX 2005,
Anaheim, CA, pp. 89-104, 2005.

[6] Gay D., Levis P., Von Behren R. Welsh M.,
Brewer E. and Culler D., “The nesC Language: A
Holistic Approach to Networked Embedded Sys-
tems”, In ACM PLDI, San Diego, pp. 1-11, 2003.

[7] Hill J., Szewczyk R., Woo A., Hollar S., Culler
D., Pister K.. “System Architecture Directions for
Networked Sensors”, In ASPLOS, Cambridge,
MA, pp. 93-104, 2000.

[8] Levis P., Lee N., Welsh M., and Culler D.,
“TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications”, In ACM SenSys,
Los Angeles, CA, 2003.

[9] Litwin W., “Linear Hashing: A New Tool for File
and Table Addressing”, VLDB 1980: 212-223.

[10] Lymberopoulos D., Savvides A., “XYZ: A
Motion-Enabled, Power Aware Sensor Node Plat-
form for Distributed Sensor Network Applica-
tions”, In IPSN, Los Angeles, pp. 449-454, 2005.

[11] Madden S.R., Franklin M.J., Hellerstein J.M.,
Hong W., ”The Design of an Acquisitional Query
Processor for Sensor Networks”, In ACM SIG-
MOD, San Diego, CA, USA, pp. 491-502, 2003.

[12] Madden S.R., Franklin M.J., Hellerstein J.M.,
Hong W., “TAG: a Tiny AGgregation Service
for Ad-Hoc Sensor Networks”, In OSDI, Boston,
MA, pp. 131-146, 2002.

[13] Sadler C., Zhang P., Martonosi M., Lyon S.,
“Hardware Design Experiences in ZebraNet”, In
ACM SenSys, Baltimore, pp. 227-238, 2004.

[14] Shnayder V., Hempstead M., Chen B., Werner-
Allen G., and Welsh M., “Simulating the Power
Consumption of Large-Scale Sensor Network Ap-
plications”, In ACM SenSys, pp. 188-200, 2004.

[15] Szewczyk R., Mainwaring A., Polastre J., Ander-
son J., Culler D., “An Analysis of a Large Scale
Habitat Monitoring Application”, In ACM Sen-
Sys, Baltimore, MD, pp. 214-226, 2004.

[16] Yao Y., Gehrke J.E., ”Query Processing in Sensor
Networks”, In CIDR, Asilomar, CA, USA, 2003.

[17] Woodhouse D. “JFFS : The Journalling Flash
File System” Red Hat Inc., Available at:
http://sources.redhat.com/jffs2/jffs2.pdf

[18] Wookey “YAFFS - A filesystem designed for
NAND flash”, Linux 2004 Leeds, U.K.

[19] Ramakrishnan R., Gehrke J., Database Manage-
ment Systems, McGraw-Hill, Third edition, 2002.

[20] “Sandisk Flash Memory Cards - Wear Level-
ing”, October 2003 White Paper, Avail-
able at: http://sandisk.com/pdf/oem/ WPaper-
WearLevelv1.0.pdf

[21] Live From Earth and Mars Project Uni-
versity of Washington, Seattle http://www-
k12.atmos.washington.edu/k12/grayskies/

[22] Wu C-H., Chang L-P., Kuo T-W., “An Efficient R-
tree Implementation Over Flash-Memory Storage
Systems”, In RTCSA, Taiwan, pp. 409-430, 2003.

[23] Wu C-H., Chang L-P., Kuo T-W., “An Efficient B-
Tree Layer for Flash Memory Storage Systems”,
In RTCSA, New Orleans, pp. 17-24, 2003.

[24] Xu N., Rangwala S., Chintalapudi K., Ganesan D.,
Broad A., Govindan R. and Estrin D., “A Wire-
less Sensor Network for Structural Monitoring”,
In Sensys, Baltimore, MD, pp. 13-24, 2004.

