MicroHash: An Efficient Index Structure for
Flash-Based Sensor Devices

Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogerakimilxios Gunopulos, Walid A. Najjar

Dept. of Computer Science Dept. of Computer Science & Eagimg
University of Cyprus University of California, Riverside
dzeina@cs.ucy.ac.cy {slin,vana,dg,najjaf@cs.ucr.edu
Abstract network devices have already emerged in environmental

and habitant monitoring [13, 15], seismic and structural
monitoring [24], factory and process automation and a
large array of other applications [11, 12, 16].

In long-term deployments, it is often cheaper to keep

.) - g large window of measurements in-situ (at the generat-
the asymmetric read/write and wear characteristics o ; . e .
Ing site) and transmit the respective information to the

flash memory in order to offer high performance Index_user only when requested (this is demonstrated in Sec-

ing and searching capabilities in the presence of a low:. .) .
energy budget which is typical for the devices under disv-\{lon 2.4). For example, biologists analyzing a forest are

; ; o . o usually interested in the long-term behavior of the en-
cussion. A key idea behindicroHashis to eliminate ex- ; .
} X . vironment. Therefore the sensors are not required to
pensive random access deletions. We have implement . . : ; :
ransmit their readings to sink (querying node) at all

MicroHashin nesC, the programming language of th(.etimes. Instead, the sensors can work unattended and store

TinyOS [7] operating system. Our trace-driven EXPETL o reading locally until certain preconditions are met,

mentation with several real datasets reveals that our in- : .
or when the sensors receive a query over the radio that
dex structure offers excellent search performance at a

. St . requests the respective data. Such in-network storage
small cost of constructing and maintaining the index. . L
conserves energy from unnecessary radio transmissions,

which can be used to increase the sampling frequency of
1 Introduction the data and hence the fidelity of the measurements in
reproducing the actual physical phenomena and prolong

The improvements in hardware design along with thethe lifetime of the network.

wide availability of economically viable embedded sen- Currently, the deployment of the sensor technology
sor systems enable researchers nowadays to sense erigiseverely hampered by the lack of efficient infrastruc-
ronmental conditions at extremely high resolutions. Tra-ture to store locally large amounts of sensor data mea-
ditional approaches to monitor the physical world in- surements. The problem is that the local RAM mem-
clude passive sensing devices which transmit their readsry of the sensor nodes is both volatile and very lim-
ings to more powerful processing units for storage andted (=2KB-64KB). In addition, the non-volatile on-chip
analysis. Wireless Sensor Devices (WSDs) the other flash memory featured by most sensors is also very lim-
hand, are tiny computers on a chip that is often as smalted (=32KB-512KB). However the limited local storage
as a coin or a credit card. These devices feature a low fresf sensor devices is expected to change soon. Several
guency processor4-58MHz) which significantly re- sensor devices, such as the RISE [1] hardware platform,
duces power consumption, a small on-chip flash meminclude off-chip flash memory which supplements each
ory (=32KB-512KB) which can be used as a temporarysensor with several megabytes of storage. Flash mem-
local storage medium, a wireless radio for communica-ory has a number of distinct characteristics compared to
tion, on-chip sensors, and an energy source such as a saher storage media: First, each page (typically 128B-
of AA batteries or solar panels [13]. This multitude of 512B) can only be written a limited number of times
features constituté’ S Ds powerful devices which can (~10,000-100,000). Second, pages can only be written
be used for in-network processing, filtering and aggre-after they have been deleted in their entirety. However, a
gation [11, 12, 16]. Large-scale deployments of sensopage deletion always triggers the deletion of its respec-

In this paper we propose tidicroHashindex, which is
an efficient external memory structure Mfireless Sen-
sor Devices (WSDsYhe most prevalent storage medium
for WSDsis flash memory Our index structure exploits

tive block =8KB-64KB per block). Due to these fun- . — |
damental constraints, efficient storage management be- Sensors | MicroControllerUnit zr
comes a challenging task. Processor
ging Power || ~4-58MHz Radio
The problem that we investigate in this paper is how (AA, Solar)
to efficiently organize the data locally on flash memory. ~88K§p;3'\4/|1KB
Our desiderata are: External | s#isus -
. . Flash | e Onchip Flash =
1. To provide efficient access to the data stored on ~32KB-512KB || =
flash bytime or value for equality queries gener- =

ated by the user.

2. To increase théongevityof the flash memory by Figure 1:The Architecture of a typical Wireless Sensor.
spreading page writes out uniformly so that the

available storage capacity does not diminish at par-)
ticular regions of the flash media. 2.1 System Architecture

We propose théicroHashindex, which serves as a The architecture of a sensor node (see Figure 1), consists
primitive structure for efficiently indexing temporal data of a microcontroller unit (MCU) which is interconnected
and for executing a wide spectrum of queries. Note thato the radio, the sensors, a power source and the LEDs.
the data generated by sensor nodes has two unique chdrhe MCU includes a processor, a static RAM (SRAM)
acteristics: i) Records are generated at a given pointodule and an on-chip flash memory. The processor runs
in time (i.e. these are temporal records), and ii) Theat low frequencies~x4-58MHz) which reduces power
recorded readings are numeric values in a limited rangeconsumption. The SRAM is mainly used for code ex-
For example a temperature sensor might only record valecution while in the latest generation of sensors, such
ues between -40F to 250F with one decimal point pre-as Yale’s 58MHz XYZ node [10] and the Intel's 12MHz
cision. Traditional indexing methods used in relationaliMote (http://www.intel.com), it can also be used for
database systems are not suitable as these do not takeemory(or SRAM) buffering. The choice of the right
into account the asymmetric read/write behavior of flashenergy source is application specific. Most sensors ei-
media. Our indexing techniques have been designed faher deploy a set of AA batteries or solar panels [13].
sensor nodes that feature large flash memories, such aherefore a sensor node might have a very long lifetime.
the RISE [1] sensor, which provide them with several The on-chip flash provides a small non-volatile storage
MBs of storage. MicroHash has been implemented inarea (32KB-512KB) for storing the executable code or
nesC [6] and uses the TinyOS [7] operating system. for accumulating values for a small window of time [11].

In this paper we make the following contributions: A larger external storage can also be supplemented to a
sensor using th8erial Peripheral Interface (SPiyhich
is typically found on these devices. For example in the
RISEplatform, nodes feature a larger off-chip flash mem-
ory which provides the sensor with several MBs of stor-
age. The external flash memory is connected to the MCU
2. We present efficient algorithms for inserting, delet-through a Serial Peripheral Interface (SPI), that oper-
ing and searching data records stored on flash. ates at a fraction of the CPU frequency (e.%’.“gﬂ).

. . . . Therefore a faster processor would increase the maxi-
3. We describe the prototype implementation of Mi- mum throughput of the SP! interface.

croHash in nesC [6], and demonsirate the efficiency Although it is currently not clear whether Moore’s

of our a_pproach with an extensive expenmgntaILaW will apply to the size and price of the sensor units
study using atmospheric readings from the Univer- . o .
sity of Washington [21] and the Great Duck Island or their hardware characteristics, we believe that future
of yd [15] 9 u sensor nodes will feature more SRAM and flash storage,
udy ' as more complex in-network processing applications, in-
crease the memory and potentially the CPU demand.

1. We propose the design and implementation of Mi-
croHash, a novel index structure for supporting
equality queries in sensor nodes with limited pro-
cessing capabilities and a low energy budget.

2 The Memory Hierarchy

In this section we briefly overview the architecture of a2'2 Overview of Flash Memory
sensor node, with a special focus on its memory hierarFlash Memory is the most prevalent storage media used
chy. We also study the distinct characteristics of flashin current sensor systems because of its many advantages
memory and address the challenges with regards to erncluding: i) non-volatile storage, ii) simple cell archi-
ergy consumption and access time. tecture, which allows easy and economical production,

iif) shock-resistance, iv) fast read access and power ef- NAND Flash installed on a Sensor Node
ficiency. These characteristics establish flash memory PageRead PageWrite | Block Erase
as an ideal storage media for mobile and wireless de- 1.17mA 37mA 57mA
vices [3]. Time 6.25ms 6.25ms 2.26ms

There are two different types of flash memodOR Data Rate 82KBps 82KBps 7MBps

. . Energy 2443 763uJd 425,

flash and NAND flash which are named according to .
he logi f thei . I NAND PageErase-Write | Flashldle | FlashSleep
the logic gate of their respective storage cell. NANLC 43mA 0.068mA 0.031mA
flash is th_e newer generation (_)f flash memory V\(r_uch IS TFime 6.75ms N/A N/A
charactenze_d by faste_r erase time, higher durab|I|_ty a_ml Data Rate 76KBps N/A N/A
higher density. NOR is an older type of flash which is| Energy 9571 220ud/sec | 100ud/sec

mainly used for code storage (e.g. forthe BIOS). Its main
advantage is that it supports writes at a byte granular-

ity as opposed to page granularity used in NAND flash.Table 1: Performance Parameters for NAND Flash using a
NOR flash has also faster access time @@00ns) than 3.3V voltage, 512B Page size and 16KB Block size

NAND (50-80us) but lacks in all other characteristics

such as density and power efficiency. . . .
. read and write operations involve the transfer of data be-
For the rest of the paper we will focus on the charac-

teristics of NAND memory as this is the type of mem- tween the MCU and the SPI bus, which becomes the bot-

ory used for the on-chip and off-chip flash of most Sen_j[leneck in the time to complete the operation. Specif-

sors including the RISE platform. According to Micron |c:_;1!|y, _reading and writing on flash media_without the
(http://www.micron.com/), NAND memory is the fastest utilization of the-SPI bus can be achieved50u and
growing memory market in 2005 ($8.7 billion). NAND ~200us respectively [22]. Finally, our results are com-

flash features a number of distinct constraints which car? arable to measurements _reported for the MICA2 mote
be summarized as following: in [2] and the XYZ sensor in [10].

_ _ Although these are hardware details, the application
1. Read-Constraint: Reading data stored on flash logic needs to be aware of these characteristics in order
memory can be performed at granularities rangingto minimize energy consumption and maximize perfor-
from a single byte to a whole block (typically 8KB- mance. For example, the deletion of a 512B page will
64KB). trigger the deletion of a 16KB block on the flash mem-
. : . Additionally the MCU has to re-write the rest unaf-
2. Delete-Constraint: Deleting data stored on flash ory oo . .
memory can only be performed at a block granular—fGCted 1525KB' One of th_e objegtlves_ of our index design
L is to provide an abstraction which hides these hardware
ity (i.e. 8BKB-64KB). . . o
specific details from the application.
3. Write-Constraint: Writing data can only be per-
formed at a page granularity (typically 256B-512B), .
after the respective page (and its respective 8kB2-4 Energy Consumption of NAND Flash

64KB block) has been deleted. Another question is whether it is cheaper to write to flash

4. Wear-Constraint: Each page can only be writ- memory rather than transmitting over the RF radio. We
ten a limited number of times (typically 10,000- used the RISE mote to measure the cost of transmitting
100,000). the data over a 9.6Kbps radio (at 60mA), and found that

The design of our MicroHash index structure in Sec_transmntlng 5128 (one page) takes on average 416ms

tion 5. considers the above constraints. or _8_2,36&J. Comparing this with the 763 required for _
writing the same amount of data to local flash, along with

the fact that transmission of one byte is roughly equiv-
alent to executing 1120 CPU instructions, makes local
storage and processing highly desirable.

Table 1, presents the average measurements that we ob-A final question we investigated is how many bytes
tained from a series of micro-benchmarks usingR®E we can store on local flash before a sensor runs out of
platform along with a HP E3630A constant 3.3V power energy. Note that this applies only to the case where the
supply and a Fluke 112 RMS Multimeter. The first ob- sensor runs on batteries. Double batteries (AA) used in
servation is that reading is three orders of magnitude lessany current designs operate at a 3V voltage and sup-
power demanding than writing. On the other hand, blockply a current of 2500 mAh (milliAmp-hours). Assuming
erases are also quite expensive but can be performedmilarly to [15], that only 2200mAh is available and
much faster than the former two operations. Note thathat all current is used for data logging, we can calcu-

2.3 Access Time of NAND Flash

late that AA batteries offe23, 760J (2200mAh * 60 * Definition 1. Value-Based Equality Queries: A One
60 * 3). With a 16KB block size and a 512B page size,dimensional querf)(v;, a) in which the field values of
we would have one block delete every 32 page writesattributev; are equivalent to value.

(16KB/512B). Writing a page, according to our mea-
surements, requires 763 while the cost of performing a
block erase is 42/]. Therefore writing 16KB requires:

For example the query=(temperature, 95F) can be
used to find time instances (ts) and other recorded read-
ings when the temperature was 95F.

. Definition 2. Time-Based Range and Equality
Writeiox p = (32 pages * T63pT) + &25,@ Queries: A range query is a one dimensional query
write cost block_erase cost Q(t,a,b) in which the time attribute, is between the
=24,841uJ lower and upper bound andb respectively. The equal-
ity gquery is a special case of the range quéj¥t, a,b)
Using the result from the above equation, we can dein whicha = b.

rive that by utilizing the23, 760J offered by the batter-

ies, we can write<15GB before running out of batteries 0" €xample the query=(ts, 100, 110) can be used to

(23,7603 * 16KB) / 24,844). An interesting point is find the tuples recorded in the 10 second interval.

that even in the absence of a wear-leveling mechanism Evaluating the above queries efficiently requires that

we would be able to accommodate the 15GB without extN€ System maintains an index structure along with the

hausting the flash media. However this would not be trugd€nerated data. Specifically, while a node senses data
if we used solar panels [13], which provide a virtually from its environment (i.e. datarecords), it also creates in

unlimited power source for each sensor device. Anothef€X entries that point to the respective data stored on the
reason why we want to extend the lifetime of the flashfl2sh media. When a node needs to evaluate some query,
media is that the batteries of a sensor node could be rdt USes the index records to quickly locate the desired

placed in cases where the devices remain accessible. data. Since the number of index records might be po-
tentially very large, these are stored on the external flash

as well. Although maintaining index structures is a well
3 Problem Definition studied problemin the database community [4, 9, 19], the

low energy budget of sensor nodes along with the unique
In this section we provide a formal definition of the in- read, write, delete and wear constraints of flash memory
dexing problem that the MicroHash index addresses. Wéntroduce many new challenges. In order to maximize
also describe the structure of the MicroHash index ancefficiency our design objectives are as follows:

explain how it copes with the distinct characteristics of 1. Wear-Leveling: Spread page writes out uniformly

flash memory. across the storage medfain order to avoid wear-
Let S denote some sensor that acquires readings from ing out specific pages.

its environment every seconds (i.e.t = 0,¢,2¢,...). 2 Block-Erase: Minimize the number ofrandom-

At each time instanceg the sensof obtains a temporal access deletionas the deletion of individual pages

data recordirec = {t,v1,vs, ..., v, }, wheret denotes triggers the deletion of the whole respective block.

the timestamp (key) on which the tuple was recorded,
while v; (1 < i < z) represents the value of some read-
ing (such as humidity, temperature, light and others).
Also let P = {p1,p2,...,pn} denote a flash media
with n available pages. A page can store a finite num-
ber of bytes (denoted ag**<), which limits the capacity

of P to ., pi"*. Pages are logically organized8n |, this section we describe the data structures created in
blocks {block, blocks, ..., blocks }, €ach block contain- e a5t hut volatile SRAM to provide an efficient way
ing /b consecutive pages. \We assume that pages aig access data stored on the persistent but slower flash

read on a page-at-a-time basis and that each PAGEN memory. First we describe the underlying organization
only be deleted if its respective block (d(_anote(;l?ﬁgc) ofdata on the flash media and then describe the involved
is deleted as well (write/delete-constraint). Finally duein-memory data structures.

to the wear-constraint, each page can only be written a
limited number of times (denoted a%°¢). L
The MicroHash index supports efficiemalue-based 4.1 Flash Organization

equality queriesand efficienttime-based equalitand MicroHash uses a Heap Organization, in which records
rangequeries. These queries are defined as follows: zre stored on the flash media in a circular array fashion.

3. Fast-Initialization: Minimize the size of in-
memory (SRAM) structures that will be required in
order to use the index.

MicroHash Data Structures

typedef struct Page { typedef struct IdxP { typedef struct DataRec {

This allows data records to be naturally sorted based on" uins_t typ:3; /1 optional anchor timestamp_t ts;

uint16_t crc:16; uint64_t lastTsS; data_t val 1;

their timestamp and therefore our organizatioBdsted uint16_t puc: 15; I dxRec recor ds[| REC); __attribute_((packed));
. uint8_t siz:7; } __attribute__((packed));
by TimestampThis organization requires the least over- uinsat ppa:23; typedef struct I dxRec {
. . . . union { typedef struct DataP { fladdress_t datap;
head in SRAM (i.e. only one data write-out page). Addi- Root P r oot P Dat aRec recor ds[DREC]; // optional of fset
. DirP dirP, } __attribute_ ((packed)); floffset_t offset;
tionally, as we will show in Section 5.4, this organization LdxP i dxP; } __attribute_((packed));

Dat aP dat aP;

addresses directly the delete, write and wear constraint. 1.
When the flash media is full we simply delete the next’ — " " *— (P

block followingidx. Although other organizationsinre- Figure 2: Main data structures used in our nesC imple-
lational database systems, suchSastedor Hashedon =~ mentation of the MicroHash Index.

some attribute could also be used, they would have a pro-
hibitive cost as the sensor would need to continuously
update written pages (i.e. perform an expensive randorﬁ
page write). On the other hand, our Heap Flash Organi-
zation always yields completely full data pages as dat
records are consecutively packed on the flash media.

respective pageid and offset, while the second layout,
enoted asooffset maintains only the pageid of the re-
pective data record. iMpata Page contains a fixed
number of data records. For example when the record
size is 16B then each page can contain 31 consecutively
packed records.

4.2 In-Memory (SRAM) Data Structures

The flash media is segmented intages, each witha 5 Indexing in MicroHash
size of 512B. Each page consists of a B&aderand a

504Bpayload. The MicroHash index is an efficient external-memory
Specifically theheader includes the following fields ~structure designed to support equality queries in sensor
(also illustrated in Figure 2): nodes that have limited main memory and processing ca-

i) A 3-bit Page Type (TYPentifier, used to for the dif- pabilities. AMicroHashindex structure consists of two
ferent types of pages (data, index, directory and root)substructures: i) Directory and ii) a set ofndex Pages
i) A 16-bit Cyclic Redundancy Checking (CR@)ly- The Directory consists of a set of buckets. Each bucket
nomial on the payload, which can be used for integritymaintains the address of the newest (chronologically) in-
checking. iii) A 7-bitNumber of Records (Sizjvhich ~ dex page that maps to that bucket. Theex Pageson-
identifies how many records are stored inside a pagéaln the addresses of the data records that map to the re-
We use fixed size records because records generated Bpective bucket. Note that there might be an arbitrar-
a sensor always have the same size. iv) A 23bivi- iy large number of data and the index pages. Therefore
ous Page Address (PPAyores the address of some otherthese pages are stored on the flash media and fetched into
page on the flash media giving in that way the capabilitymain memory only when requested.
to create linked lists on the flash. v) A 15-Bige Write The MicroHashindex is built while data is being ac-
Counter (PWC)which keeps the number of times a page quired from the environment and stored on the flash me-
has been written to flash. dia. In order to better describe our algorithm we divide
While the header is identical for any type of page, theits operation in four conceptual phases: The Initial-
payload can store four different types of information: ization Phaseén which the root page and certain parts
i) Root Page contains information related to the state of Of the directory are loaded into SRAMb) The Grow-
the flash media. For example it contains the position ofng Phasén which data and index pages are sequentially
the last write (idx), the current cycle (cycle) and meta-inserted and organized on the flash medjalhe Repar-
information about the various indexes stored on the flasfition Phasein which the index directory is re-organized
media. ||) Directory Page contains a number of direc- such that Only the direCtory buckets with the hlghest hit
tory records (buckets) each of which contains the addres@tio remain in memory, and th#) The Deletion Phase
of the last known index page mapped to this bucket. Inwhich is triggered for garbage collection purposes.
order to form larger directories several directory pages
might bg__chained using tht_a 23—t_)it PPA addresg in thes_l The Initialization Phase
header. iii)index Pagecontains a fixed number of index
records and the 8 byte timestamp of the last known dat#n the first phase the MicroHash index locates the root
record. The latter field, denoted anmchoris exploited page on flash media. In our current design, the root page
by timestamp searches which can make an informed das written on a specific page on flash (page0). If page0
cision on which page to follow next. Additionally, we is worn out, we recursively use the next available page.
evaluate two alternative index record layouts. The first,Therefore a few blocks are pre-allocated at the beginning
denoted a®ffsetlayout, maintains for each data record of the flash media for the storage of root pages. The root

page indicates what type of indexes are available on the oiecoy Directory Index Pages
system and the addresses of their respective directories. ©
Given that an application requires the utilization of an o2 5
index I, the system pre-loads part éfs directory into 2030] o
SRAM (detailed discussion follows in Section 5.3). The o4 &
root and directory pages then remain in SRAM, for effi-
ciency, and are periodically written out to flash.

Figure 3: The Repartition Phase.

5.2 The Growing Phase

Let us assume that a sensor generates a temporal reco?ds The Repartition Phase
drec = {t,v1,v2,...,v,} €verye seconds, where is A drawback of the initialequiwidth buckesplitting ap-
the timestamp on which the record was generatediand proach is that some buckets may rarely be used while
(1 <4 < z) some distinct reading (e.g. humidity, tem- others may create long lists of index records. To over-
perature, etc). Instead of writingrec directly to flash, come this problem, we use the following splitting pol-
we use an in-memory (SRAM) buffer page”*c. When icy: Whenever a directory bucket links to more than-
pv""¢ gets full itis flushed to the addreasér, whereidz records (user parameter), we evict to flash the buBket
denotes the address after the last page write. Note thgbhich was not used for the longest period of time. Note
idx starts out as zero and this counter is incremented byhat this mechanism can be implemented using only two
one every time a page is written out. Whefx becomes counters per bucket (one for the timestamp and one for
equal to the size of the flash mediait is reset to zero. the number of records). In addition to the eviction of
In order to provide a mechanism for finding the relative page B, we also create a new buckdtl. Our objec-
chronological order of pages written on the flash mediative is to provide a finer granularity to the entries.n
we also maintain the counteycle, which is incremented as this bucket is the most congested one. Note that the
by one every timédz is reset to zero. The combination values inA are not reassigned betwednand A1 as it
of the <cycle, pageid> provides this mechanism. would happen in dynamic hashing techniques, such as
Next we describe how index records are generated angxtendible hashinf#] or linear hashing9]. The reason
stored on the flash media. The index records in ouis that the index pages are on the flash media and updat-
structure are generated wheneverjitie’* gets full. At ing these pages would result in a potentially very large
this point we can safely determine the physical addrespumber of random updates (which would be extremely
of the records inp“"¢ (i.e. idx). We create one in- expensive). Ouequidepthrather than equiwidth, bucket
dex recordir = [idz,of fset] for each data record in splitting approach keeps in memory finer intervals for in-
pvrite (Ydrec € p*"*¢). For example assume that we dex records used more frequently.
insert the following 12 byt&imestamp, value] records Figure 3 shows that each bucket is associated with a
into an emptyMicroHashindex: {{1000,50], [1001,52], counters, that indicates the timestamp of the last time
[1002,52]}. This will trigger the creation of the foII_ow— the buffer was used, and a countethat indicates the
ing index recordsy [0,0],[0,12],[0,24]}. Sincep”"™¢ number of index records added since the last split. In the
is written to addressdz the index records always ref- example, the = 3 value in bucket 2 (A:[10-20]) exceeds
erence data records that have a smalleycle,pageid ther = 2 threshold and therefore the index forces bucket
identifier. 4 (B:[30-40]) to the flash media while bucket two is split
The MicroHash Directoryprovides the start address into A:[10-15] and A1:[15-20]. Note that th list now
of the index pages. Itis constructed by providing the fol-contains values in [10-20] while th1 list contains only
lowing three parameters: a) A lower bourld)(on the values in the range [15-20].
indexed attribute, b) an upper bound) on the indexed
attribute and t_he numb_erof available _bucke(aote that .54 The Deletion Phase
we can only fit a certain number of directory buckets in
memory). For example assume that we index temperin this phase the index performs a garbage collection op-
ature readings which are only collected in the follow- eration of the flash media in order to make space for new
ing known and discrete range-40..250], then we set data. The phase is triggered afteralpages have been
Ib = —40F, ub = 250F andc = 100. Initially each written to the flash media. This operation blindly deletes
bucket represents exactify’%b' consecutive values al- the nextn/b pages (the whole next block starting ét:).
though this equal splitting (which we caluiwidth split- It is then triggered again whenevefb pages have been
ting) is refined in the repartition phase based on the datavritten, whereb is the number of blocks on the flash
values collected at run-time. media. That leaves the index witlyb clean pages that

can be used for future writes. Note that this might leaveAlgorithm 1 EqualitySearch
pointers from index pages referencing data that is alreadyput: value: the query (search predicate).
deleted. This problemis handled by our search algorithn©utput: The records that containglue.
described in the next section. 1. procedure EQUALITY SEARCH(value)
The distinct characteristic of our garbage collection 2@ bucket = hash(value);
operation is that it satisfies directly the delete-constrai % address = dirP [bucket].idz P;
because pages are deleted in blocks (which is cheapef: ~ While (idzP = loadPage{ddress)) 1= NULL) do
than deleting a page-at-a-time). This makes it differ- > for i = 010 lidzP.size| do

LY . . If ((dataP=loadP idxP[i].dataP))==NULL
ent from similar operations of flash file systems [2, 17] aé(d;:szo.osreaige(l XPl.dataP))

that perform page-at-a-time deletions. Additionallysthi 8; If (dataP.record[idxP[i].offset|==value)
mode provides the capability to "blindly” delete the next q. signal dataP.record[idxP[i.offset];
block without the need to read or relocate any of thejo: end for

deleted data. The correctness of this operation is estah: address = idxP.ppp;

lished by the fact that the index records always referencez2: end while

data records that have a smallecycle,pageid- identi- 13 signal finished,

fier. Therefore when an index page is deleted then we ar&4: end procedure
sure that all associated data pages are already deleted.

L 6.2 Searching by Timestamp
6 Searching in MicroHash
In this section we investigatitme-based equality and

In this section we show how records can efficiently berange queriesFirst, note that if index pages were stored
located by their value or timestamp. in a separate physical location, and thus not interleaved
with data pages, the sorted (by timestamp) file organiza-
tion would allow us to access any data record(l)
time. However, this would also violate our wear level-
The first problem we consider is how to perfoualue- ing mechanism as we wouldn’t be able to spread out the
based equality queriesFinding records by their value page writes uniformly among data and index pages. An-
involves: a) locating the appropriate directory bucket,other approach would be to deploy an in-memory address
from which the system can extract the address of the lagranslation table, such as the one used in [22] and [23],
index page, b) reading the respective index pages on which would hide the details of wear-leveling mecha-
page-by-page basis and c) reading the data records reism. However, such a structure might be too big given
ferred by the index pages on a page-by-page basis. Sinébe memory constraints of a sensor node and would also
SRAM is extremely limited on a sensor node we adoptdelay the sensor boot time.
a record-at-a-timequery return mechanism, in which Efficient search can be supported by a number of dif-
records are reported to the caller on record-by-recorderent techniques. One popular technique is to perform
basis. This mode of operation requires three available binary search over all pages stored on the flash media.
pages in SRAM, one for the directory (dirP) and two for This would allow us to search i®(logn) time, where
the reading (idxP,dataP), which only occupies 1.5KB. Ifn is the size of the media. However, for large values of
more SRAM was available, the results could have beem such a strategy is still expensive. For example with a
returned at other granularities as well. The completeb12MB flash media and a page size of 512B we would
search procedure is summarized in Algorithm 1. need approximately 20 page reads before we find the ex
Note that the loadPage procedure in line 4 and 6 repected record.
turns NULL if the fetched page is not in valid chrono- In our approach we investigate two binary search vari-
logical order (with respect to its preceding page) or, ifants namedtBSearchandScaleSearch_BSearchstarts
the data records, in data pages, are not within the spe@ut by setting a pessimistic lower bound on which page
ified bucket range. This is consequence of the way théo examine next, and then recursively refines the lower
garbage collector operates, as it does not update the inddsound until the requested page is foun8caleSearch
records during deletions for performance reasons. Howen the other hand exploits knowledge about the underly-
ever, these simple checks applied by loadPage ensure thiag distribution of data and index pages in order to offer
we can safely terminate the search at this point. Finallya more aggressive search method that usually executes
since the MicroHash index returns records on a recordfaster. ScaleSearch is superior to LBSearch when data
at-a-time basis, we use a firgignal finishedvhich no- and index pages are roughly uniformly distributed on the
tifies the application that the search procedure has beeffash media but its performance deteriorates for skewed
completed. distributions.

6.1 Searching by Value

P T e N S LN, far, assumes that the only pages that carry a timestamp
® LM T, shift 1, ¢ are data pages which contain a sequence of data records
{[ts1,val1]...]ts1,valp]}. In such a case, the LBSearch
has toshiftright until a data page is located. In our exper-
iments we noted that this deficiency could add in some
é scale >0y cases 3-4 additional page reads. In order to correct the
‘s ScaleSearch + No Anchors B = problem we store the last known timestamp inside each

° @

LBSearch + No Anchors

T a4 b WY

t LBSearch + Anchors ty ty toly

° @

sk A~ b IV . index page (namedncho).
1, ScaleSearch + Anchors 3 [t,

i) ScaleSearch When index pages are uniformly
spread out across the flash media, then a more aggressive
Figure 4: Searching By Timestamf: oldesttimestamp search strategy might be more effective ScaleSearch
on flash ¢.: newest)/,: the query (timestamp}b: The which is the technique we deployed MicroHash in-

s

lower bound obtained using eith&tx;;, Or idz scared- stead of usindgdz;;, in the first step we uslz.qcq:
tg—ta , : ; —=0-
For the remainder of this section we assumethataseq—dxscaled(tq ty) = [tb—ta * Zdﬂ) if cycle==0;
sorS maintains locally some indexed readings for the in- idx + HZ%‘;“ * n—‘ , otherwise.

terval [t,..tp]. Also letz < y (andz > y) denote that
the<cycle,, idz,> pair of z is smaller (and respectively ~ We then use LBSearch in order to refine the search.
greater) than theccycle,, idz, > of y. WhenS'is asked Note thatidz,caeq Might in fact be larger thandz,,
for a record with the timestamiy, it follows one of the in which case LBSearch might need to move counter-
following approaches: clockwise (decreasing time order).

i) LBSearch S starts out by setting the lower bound : Performing a timestamp-based range qu@(y,, a, b)
is a simple extension of the equality search. More

(e, 1) = Pq;s ; if cycle==0; specifically, we first perform a ScaleSearch for the
1aTip\tq;ts) = ide + tqftﬂ . otherwise. upper bound (i.e. Q(t4, b)) and then sequentially read
" backwards untile is found. Note that data pages are

whereidz is the address of the last written page &hd chained in reverse chronological order (i.e. each data
constant indicating the maximum number of data recordpage maintains the address of the previous data page)
per page. It then deploys theBSearch(ts,idxy,) pro- — and therefore this operation is very simple.

cedure as illustrated in Algorithm 2. It is easy to see that

in each recursion step, LBSearch always moves clock-

wise (increasing time order) and thatr;, < idx;,.

6.3 Search Optimizations

Algorithm 2 LBSearch (No Anchors) o .
Input: £,: the query (timestampyurrent: begin search ad- In the basic MicroHash approach, index pages on flash

dress might not be fully occupied. This incurs a significant

Output: The page that contairtg. performance penalty when somebody performs a search
1: procedure LBSEARCH(t,, current) by value, because the system has to read in memory more
2 p = readPage(current); pages than necessary. In this section we present two al-

if (isIndex Page(p)) then ternative methods that alleviate this performance penalty
[/ Logical right shift o The first method, namefif-Like Chaining (ELC)elim-
return carch(tq, current +1); inates non-full index pages which as a result decreases

3
4

5:

6: else . .
7 t1 = Porecord|0].ts: the number of pages required to answer a query, while
8

9

to = Prrecord[Plbul.ts; the second method, namé&udio-Phase Rearhinimize_s
. if (t1 < t, < t2) then the number of bytes transferred from the flash media.
10: return P;
1L end if 6.3.1 Elf-Like Chaining (ELC)
12: return LBSearch(tq, current +idxy(tq, t2));
13: end if In the MicroHash index, pages are chained using a back-
14: end procedure pointer as illustrated in Figure 5 (namédicroHash

Chaining. Inspired from the update policy of the ELF
It is important to note that a lower bound can only filesystem [2], we also investigate, and later experimen-

be estimated if the fetched page, on each step of the rdally evaluate, theElf-like Chaining (ELC)mechanism.

cursion, contains a timestamp value. Our discussion s@he objective ofE' LC is to create a linked list in which

I Lk ey Ty > K —copy (> k

K F\k»/\ Y — L — n n

size-k size-k size-k

MicroHash Chaining P P P Pis Pis
;//: y Figure 6: Sequential Trashing in ELC.
) B) L e e e
— " copy k| ,=ki’|,,
[opy o) .
Elf-Like Chaining J Piss and then augmenig**¢ (a full page) new index records

as shown in Figure 6. That will evigt to some new ad-
Figure 5: Index Chaining Methods: a) MicroHash dress (in our scenarip;,3). However some additional
Chaining and b) ELF-like Chaining. ps*¢ — k records are still in the buffer. Assume that

these pages are at some point evicted from memory to

each node, other than the last node, is completely ful>0me new flash position (in our scengpiqs). So far we

This is achieved by copying the last non-full index pageUtIllzed three pagesy, pi+3 andp;5) while the 'rl?fix
: : rgcords could fit into only 2 index pages (i.k+ p;
into a newer page, when new index records are requeste

size ini
to be added to the index. This procedure continues unr_ecordsk <p;"*). When the same scenario is repeated,

) . X L then we say thak/ LC' suffers fromSequential Trashing
til an index page becomes full, at which point it is not : . .

and ELC will require double the required space to ac-
further updated.

To better understand the two techniques, consider thgommodate allindex records.

following scenario (see Figure 5): Anindex page on flash

(denoted a®; (i < n)), containsk (k < p;**¢) index 6.3.2 Two-Phase Page Reads
records{iry, irs, ..., irg } that in our scenario map to di-
rectory bucketv. Suppose that we create a new dat
page on flash at positiop;.1. This triggers the cre-

ation of/ additional index records, which in our scenario
map to the same bucket In MicroHash Chaining

(M HC), the buffer manager simply allocates a new in-

Qex page fow a}nd keeps the sequen{:ieq,z‘.rg, s 071} from flash can be performed at any granularity (i.e. as
in memory until the LRU replacement policy forces the small as a single byte). Specifically, we propose the de-

page to _be written out. Assuming that the new _mdex Se'ployment of aTwo-Phase Page Reaa which the MCU
guence is forced out of memory g, 3, thenp; will be

back-pointed b5 as shown in Figure 5. IBlf-Like reads a fixed header from flash in the first phase, and then

Chaining (ELC), the buffer manager reags in mem- reads the exact amount of bytes in the next phase. We

d th ts it with tH ind d experimentally evaluated the performance of two-phase
ory an‘ en .augme'n s it wi ENEW INOEX TECOrds raads versus single phase reads using the RISE sensor
(i.e. {ir1,...,irg,...,ir+1}). However,p; is not up-

. . . node and found that such an approach significantly min-
dated due to the write and wear constraint, but mSteaﬁjmizes energy consumption PP 9 y

the buffer manager writes the néw- k& sequence to the
end of the flash media (i.e. pt;3). Note thatp; is now
not backpointed by any other page and will not be uti-7 Experimental Methodology
lized until the block delete, guided by thiéx pointer,
erases it. In this section we describe the details of our experimental
The optimal compaction degree of index pages inmethodology.
ELC significantly improves the search performance of
an index as it is not required to iterate over partially full
index pages. However, in the worse caBé,C might in-
troduce an additional page read per indexed data recorVe have implemented MicroHash along with a tiny LRU
Additionally we observed in our experiments, presentedBufferManager in nesC[6], the programming language
in Section 8, thatF LC requires on average 15% more of TinyOS[7]. TinyOS is an open-source operating sys-
space than the typical MicroHash chaining. In the worsttem designed for wireless embedded sensor nodes. It
case, the space requirementof.C might double the was initially developed at UC-Berkeley and has been de-
requirement of\f HC. ployed successfully on a wide range of sensors including
Consider again the scenario under discussion. Thishe RISE mote. TinyOS uses a component-based archi-
time assume that the buffer manager regada memory tecture that enables programmers to wire together in on-

Our discussion so far assumes that pages are read from
4he flash media on a page-by-page basis (usually 512B
per page). When pages are not fully occupied, such as
index pages, then a lot of empty bytes (padding) is trans-
ferred from the flash media to memory. In order to alle-
viate this burden, in [1] we exploit the fact that reading

7.1 Experimental Testbed

demand basis the minimum required components. Thig.3 Dataset Descriptions

minimizes the final code size and energy consumption as _ -

sensor nodes are extremely power and memory limitedSince we cannot measure environmental conditions, such
nesC [6] is the programming language of TinyOS and it&S temperature or humidity in a simulation environment,

realizes its structuring concepts and its execution modelV® adopt a trace-driven experimental methodology in
Our implementation consists of approximately 5000"Which a real dataset is fed into the TOSSIM simulator.

lines of code and requires at least 3KB in SRAM. Specif—'vIore sp_ecmcally, we us_e the follgw_mg datasets:
ically we use one page as a write buffer, two pages for Washlng_ton State Climate: This is a real dataset of
reading (i.e. one for an index page and one for a dat@tmospheric data collected by the Department of Atmo-

page), one page as an indexing buffer, one for the direcsPheric Sciences at the University of Washington [21].
tory and one final page for the root page. In order t1oOUr 268MB dataset contains readings on a minute basis

increase insertion performance and index page compacfetween January 2000 and February 2005. The readings,

ness, we also supplement additional index buffers (i_eyvhich are recorded at a weather logging station in Wash-

2.5KB-5KB). ington, include barometric pressure, wind speed, rela-

We had to write a library that simulates the flash medial ' humidity, cumulative rain and others. Since many

using an operating system file, in order to run our codeOf these readings are not typically measured by sensor

in TOSSIM [8], the simulation environment of TinyOS. podes we only index the t(_amperature and pressure read-
We additionally wrote a library that intercepts all mes- ings, and use the rest readings as part of the data included

sages communicated lam TiyOS o he flash b 29006. Mol 1t e o et ssaumpton, o
and prints out various statistics and one final library thatf y y
erent parameters.

visualizes the flash media using bitmap representations. .
Great Duck Island (GDI 2002): This is a real dataset

from the habitat monitoring project on the Great Duck

_ ; Island in Maine [15]. We use readings from one of
7.2 PowerTOSSIM - Energy Modeling the 32 nodes that were used in the spring 2002 deploy-

PowerTOSSIM is a power modeling extension toMent, whichincluded the following readings: light, tem-
TOSSIM presented in [14]. In order to simulate the en-Perature, thermopile, thermistor, humidity and voltage.
ergy behavior of the RISE sensor we extended Power@Ur dataset includes approximately 97,000 readings that
TOSSIM and added annotations to the MicroHash strucWere recorded between October and November 2002.
ture that accurately provide information when the power

states change in our environment. We have focused o . .
attention on precisely capturing the flash performanc% Experimental Evaluation
characteristics as opposed to capturing the precise per-

formance of other less frequently used modules (the ral" this section we present extensive experiments to
dio stack, on-chip flash, etc). demonstrate the performance effectiveness of the Micro-

SHash Index structure. The experimental evaluation de-

Our power model follows our detailed measurements "~) ; . :
scribed in this section focuses on three parameters: i)

of the RISE platform [1], which are summarized as fol- S o ;
lowing: We use a 14.8 MHz 8051 core operating at 3_3VSpace 9verhead of maintaining .the.add|t_|onal index
with the following current consumption 14.8mA (On), pages, i)Search Performance which is defined as the

8.2mA (Idle), 0.2:A (Off). We utilize a 128MB flash average number of pages accessed for finding the re-

media with a page size of 512B and a block size of 16KB._qUired record and iiiEnergy Consumption, for index-

The current to read, write and block delete was 1.17mA!"Y the data records. Due to the design of the MicroHash

37mA and 57A and the time to read in the three pre- 1|r_1r(]jex,feacft1hpage was wnttendetxactly once dlt”:lng aclycltte.
mentioned states was 6.25ms, 6.25ms, 2.27ms. eretore there was no need to experimentally evajuate

. . the wear-leveling performance.
Using these parameters, we performed an extensive

empirical evaluation of our power model and found that

PowerTOSSIM is ir_1deed a very useful an(_:i quite accug.1 Overhead of Index Pages

rate tool for modeling energy in a simulation environ-

ment. For example we measured the energy required ttn the first series of experiments we investigate the over-

store 1 MB of raw data on an RISE mote and found thathead of maintaining the additional index pages on the

this operation requiress26m.J while the same operation flash media. For this reason we define the overhead ratio

in our simulation environment returnéd59m.J, which & as follows: & = —dexlages . We investi-
Pages+IndexPages " i

has a error of only 5%. On average we found that Pow-gate the parametdr using a) An increasing buffer size

erTOSSIM provided an accuracy of 92%. and b) An increasing data record size.

Space Overhead [Index/(Index+Data)] (%)

Space Overhead [Index/(Index+Data)] (%)

45
40
35
30

Index Space Overhead Ratio
Varying Buffer Size and fixed 18B record size

T T T T
Index on Temperature (Offset) —+—
Index on Temperature (noOffset) --><-- -
Index on Pressure (Offset) ---%--
Index on Pressure (noOffset) &
—

25 fereznos

20
15
10

25 3 35 4 45 5

50

40

30

20

10 |-

0
10 12 14 16 18 20 22

Buffer Size (KB)

Index Space Overhead Ratio
Varying Record Size and fixed 3KB buffer

T T T T
Index on Temperature (Offset) —+— |
Index on Temperature (noOffset) -->--
N Index on Pressure (Offset) ---x--
Tl Index on Pressure (noOffset) &

NJ e \‘*n\%’_\»_

—t 3

ke EEE SRR -

Record Size [8B/TS + 2B/attribute] (bytes)

8.1.2 Increasing Data Record Size

Sensor nodes usually deploy a wide array of sensors,
such as a photo sensor, magnetometer, accelerometer
and others. Therefore the data record size on each time
instance might be larger than the minimum 10B size
(8B timestamp and 2B data value). Figure 7 (bottom)
presents our results using a varying data record size. The
figure shows that in all cases a larger data record size
decreases the space overhead proportion. Therefore it
does not become more expensive to store the larger data
records on flash.

8.2 Searching By Timestamp

In the next experimental series, we investigate the aver-
age number of pages that must be read in order to find
a record by its timestamp. We search for 100 times-

tamps selected uniformly at random, from the available

five year range, and then calculate the average number of
pages read. Note that if we did not use an index, and thus
had only data records on the flash, then we could find the

Figure 7: Space Overhead of Index Pages with a) varyingxpected record in O(1) time as we could manipulate the
buffer size and b) varying record size.

We also evaluate two different index record layouts: a
Offset in which an index record has the following form
{pageid,offset and NoOffset in which an index record
has the form{pageid. We use the five year timeseries

position of the record directly. However, this would also
violate our wear leveling mechanism.
We evaluate the proposed search by timestamp meth-

)ods LBSearch and ScaleSearch under two different in-

dex page layouts: afnchor, in which every index
page stores the last known data record timestamp and b)
NoAnchor in which an index page does not contain any

from the Washington state climate dataset and index datdmestamp information. _ .

records based on their temperature and pressure attribute, Figure 8 shows our results using the Washington state
The data record on each of the 2.9M time instances waSlimate dataset for both an index on Temperature (Fig-
18 bytes (i.e. 8B timestamp + 5x2B readings). ure 8_top) and an Index on Pressure (Fl_gur_e 8 bot_tom).
The figures show that using an anchor inside an index
pages is a good choice as it usually reduces the number
of page reads by two, while it does not present a signif-
icant space overhead (only 8 additional bytes). The fig-
ures also show that ScaleSearch is superior to LBSearch
as it exploits the uniform distribution of index pages on
Figure 7 (top) presents our results using a varying bufferthe flash media. This allows ScaleSearch to get closer to
The figure shows that in all cases a larger buffer helps irthe result, in the first step of the algorithm.

fitting more index records per page which therefore also The figures finally show that even though the time
linearly reduces the overall space overhead. In both th&vindow of the query is quite large (i.e. 5 years or
pressure and temperature case nb®ffseindex record 128MB), ScaleSearch s able to find a record by its times-
layout significantly reduces the space overhead as less itamp in approximately 3.5-5 page reads. Given that a
formation is required to be stored inside an index recordpage read takes 6.25ms, this operation requires accord-

The figure shows that indexing on pressure achieveg1g to the RISE model only 22-32ms or 84-12D

a lower overhead. This is attributed to the fact that the

pressure changes slower than the temperature over timg.3 Searching by Value: MicroHash
This leads to fewer evictions of index pages during the Chaining vs. ELF-Like Chaining

indexing phase which consequently also increases the in-

dex page occupancy. We found that a 3KB buffer sufficesThe cost of searching a particular value on the flash me-
to achieve occupancy of 75-80% in index pages. dia is linear with respect to the size of the flash me-

8.1.1 Increasing Buffer Size

Search By Timestamp Performance (Index on Temperature) Insertion Performance: ELC vs MHC Chaining Histogram

11 T T T 5000 T
LBSearch + NoAnchor —+— MHC Writes
=~ 10 LBSearch + Anchor -->-- | ELC Writes —-—+--
Q ScaleSearch + NoAnchor ---%-- 4000 (. ELC Total (Read+Write) ---x--
o ScaleSearch + Anchor & %
o 9 X X
X
P , 3000 : X
(=} RS SN [}
& el
z 7 T 2000 P a
3 S, s A R
£ T Mp: b %
] R U ’agr X
=) S B 1000 X 4 :
g s ? oy S X5 &,
. o)
4 0 %
25 3 35 4 45 5 20 40 60 80 100
Buffer Size (KB) Temperature
Search By Timestamp Performance (Index on Pressure) Search Performance: ELC vs MHC Chaining Histogram
55
‘ LBSearch + NoAnch(‘)r — 2 10000 £ ‘ MHC Index R‘ead
— LBSearch + Anchor ---- = 1 MHC Total Read 1
Q 5 ScaleSearch + NoAnchor ---%-- | % K ELC Index Read ---+--
b ScaleSearch + Anchor & ¢ ELC Total Read -~
© — £ 8000
N a
D 4s Ko S
& I T 6000 %
IR
Q-m, ><\ 4 Z >§>}\
[}
9 4 S
54 o 4000
b4 =
8 -~ °
g 35 3 2000
a &l . — £
I o - 5 M
: B z
3 0 e
25 3 35 4 45 5 20 40 60 80 100
Buffer Size (KB) Temperature

Figure 8: Search-By-Timestamp Performance of the Mi-Figure 9: Comparing MicroHash Chaining (MHC) with
croHash Index. ELF-like Chaining (ELC) using a) Insertion Performance
and b) Searching Performance by Value.

dia. However, a simple linear scan over 256 thousands
pages found on a 128MB flash media, would result inmance since the system is required to fetch less index
an overwhelming large search cost. One factor that sigpages during search. This can be observed in Figure 9
nificantly affects search performance is the occupancy ofbottom), in which we present the number of index pages
index pages. In the basic MicroHash approach, indexead and the total number of pages (index + data). On the
pages on the flash might not be fully occupied. If indexother hand, we also observe that ELC only reduces the
pages are not fully utilized, then a search would requireoverall read gain to about 10%. This happens because
iterating over more pages than necessary. the reading of data page, dominates the overall reading
In this section we perform an experimenta| Compar-COSt. However when searches are more frequent, then
ison of the index chaining strategies presented in Secthe 10% is still an advantage and therefore ELC is more
tion 6.3. We evaluate both MicroHash Chaining (MHC) appropriate than its counterpart MHC.
and Elf-like chaining (ELC) using a fixed 3KB buffer.
We (_jgploy the ch_aining methodg wher_1 tr_le temperatur%_4 Great Duck Island Trace
is utilized as the index (we obtained similar results for
pressure). Our evaluation parameters are : a) Indexing this last experimental series we index measurements
Performance (pages written) and b) Search Performandgom the great duck island study, described in Sec-
(pages read). tion 7.3. For this study we allocate a fixed 3KB index
Figure 9 (top) shows that MHC always requires lessbuffer along with a 4MB flash media that has adequate
page writes than ELC. The reason is that ELC's strat-space to store all the 97,000 20-byte data readings.
egy results in about 15% sequential trashing, which is In each run, we index on a specific attribute (i.e.
the characteristic presented in Section 6.3. AdditionallyLight, Temperature, Thermopile, Thermistor, Humidity
ELC requires a large number of page reads in order t@and Voltage). We then record the overhead ratio of index
replicate some of the index records. This is presenteghagesd, the energy required by the flash media to con-
in the ELC Total plot, which essentially shows that it struct the index as well as the average number of page
requires as many page reads as page writes in order teads that were required to find a record by its times-
index all records. On the other hand, ELC's strategy retamp. We omit the search by value results, due to lack of
sults in linked lists of fully occupied index pages than space, but the results are very similar to those presented
MHC. This has as a result, an improved search perforin the previous subsection.

IndexOn | Overhead | Energy | ScaleSearch An R-tree and B-Tree index structure for flash memory
Attribute | Ratio ® % | Index (mJ) | Page Reads| on portable devices, such as PDA's and cell phones, has
Light 26.47 4,134 4.45 been proposed in [22] and [23] respectively. These struc-
Temperature| 27.14 4,172 545 tures use an in-memory address translation table, which
Thermgpne 24.08 4,005 6.29 hides the details of wear-leveling mechanism. However,
Thermistor 14.43 3,554 5.10 . .
Humidity 7 604 3202 297 such gstruc.tu.re has_a very I_arge footprint (3-4MB) which
Voltage 2027 3771 4.21 constitutes it inapplicable in the context of microcon-

trollers with limited SRAM.

Wear-Leveling techniques have also been reported by
Table 2: Performance Results from Indexing and Searchingflash card vendors such as Sandisk [20]. These tech-
the Great Duck Island dataset. nigues are executed by a microcontroller which is located
inside the flash card. The Wear-Leveling techniques are

Table 2 shows that the index pages never require moronly executed within 4MB zones and are thosal rather
that 30% more space on the flash media. For some rea(?:'an global which is the case in MicroHash. A main

. . drawback of thdocal wear-leveling techniques is that
ings that do not change frequently (e.g. humidity), we : .

) the writes are no longer spread out uniformly across all
observe that the overhead is as low as 8%. The table alsQ _. . : .
shows that indexing the records has only a small increasavallalble pages. Finally these techniques assume a dedi-
in ener demandg Specifically. the ean cost of stor-gated controller while our techniques can be executed by
! oy - cpecitically, gy the microcontroller of the sensor device.

ing the records on flash without an index was 3042mJ, Systems such as TinyDB[11] and Cougar[16] are op-
which is on average only 779mJ less than using an IndeXtimized for sensor nodes with limited storage and rel-

Therefore maintaining the index records does not impose
. atively shorter-epochs, while our techniques are desig-
a large energy overhead. Finally the table shows that we

. o . nated for sensors with larger external flash memories and
were able to find any record by its timestamp with 4'75Ionger epochs. Note that in TinyDB users are allowed
page reads on average.)

to define fixed size materialization points through the
STORACE PO NT clause. This allows each sensor to
9 Related Work gather locally in a buffer some readings, which cannot
be utilized until the materialization point is created m it

There has been a lot of work in the area of query pro_entirety. Therefore even if there Was_e_nough storage to
cessing, in-network aggregation and data-centric storageloré MBs of data, the absence of efficient access meth-
in sensor networks. To the best of our knowledge, ou@ds makes the retrieval of the desired values expensive.
work is the first that addresses the indexing problem on
sensor nodes with flash memories. 10 Conclusions

A large number of flash-based file systems have been
proposed in the last few years, including the Linux In this paper we propose thdicroHashindex which is
compatible Journaling Flash File System (JFFS andan efficient external memory hash index that addresses
JFFS2)[17], the Virtual File Allocation Table (VFAT) the distinct characteristics of flash memory. We also pro-
for Windows compatible devices and the Yet Anothervide an extensive study of NAND flash memory when
Flash File System (YAFFS)[18], specifically designedthis is used as a storage media of a sensor device. Our
for NAND flash with it being portable under Linux, design can serve several applications, including sensor
uClinux, and Windows CE. The first file system for sen- and vehicular networks, which generate temporal data
sor nodes was Matchbox and this is provided as an inteand utilize flash as the storage medium. We expect that
gral part of the TinyOS [7] distribution. Recently the Ef- our proposed access method will provide a powerful new
ficient Log Structured Flash File System (ELF)[2] shows framework to cope with new types of queries, such as
that it offers several advantages over Matchbox includtemporal or top-k, that have not been addressed ade-
ing higher read throughput and random access by timesjuately to this date. Our experimental evaluation with
tamp. Other filesystems for embedded microcontrollerseal traces from environmental and habitant monitoring
that utilize flash as a storage medium include the Transshow that the structure we propose is both efficient and
actional Flash File System (TFFS) [5]. However the practical.
main job of a file system is to organize the blocks of
the storage media into files and directories and to prop
vide transaction semantics on these attributes. Therefore
a filesystem does not support the retrieval of records byVe would like to thank Joe Polastre (UC Berkeley) for
their value as we do in our approach. providing us the Great Duck Island data trace and Victor

cknowledgements

Shnayder (Harvard) for his help on the PowerTOSSIM [11] Madden S.R., Franklin M.J., Hellerstein J.M.,
environment. We would also like to thank Abhishek Mi-

tra and Anirban Banerjee (UC Riverside) for their assis-
tance in the RISE micro-benchmarks. Finally, we would

like to thank our shepherd, Andrea Arpaci-Dusseau, and

the anonymous reviewers for their numerous helpful [12]
comments. This work was supported by grants from NSF
ITR #0220148, #0330481.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

[10]

Banerjee A., Mitra A., Najjar W., Zeinalipour-
Yazti D., Kalogeraki V. and Gunopulos D., “RISE
Co-S : High Performance Sensor Storage and Co-
Processing Architecture”, In IEEE SECON, Santa
Clara, CA, USA, to appear in 2005.

Dai H., Neufeld M., Han R., “ELF: an efficient
log-structured flash file system for micro sensor
nodes”, In SenSys, Baltimore, pp. 176-187, 2004.

Dipert B., Levy M., “Designing with Flash Mem-
ory”, AnnaBooks Publisher, 1994.

Fagin R., Nievergelt J., Pippenger N., Strong
H.R.: “Extendible Hashing - A Fast Access
Method for Dynamic Files”, In ACM TODS, vol
4(3), pp. 315-344, 1979.

Gal E. and Toledo S., “A Transactional Flash File
System for Microcontrollers”, In USENIX 2005,
Anaheim, CA, pp. 89-104, 2005.

Gay D., Levis P, Von Behren R. Welsh M.,
Brewer E. and Culler D., “The nesC Language: A
Holistic Approach to Networked Embedded Sys-
tems”, In ACM PLDI, San Diego, pp. 1-11, 2003.

Hill J., Szewczyk R., Woo A., Hollar S., Culler
D., Pister K.. “System Architecture Directions for
Networked Sensors”, In ASPLOS, Cambridge,
MA, pp. 93-104, 2000.

Levis P., Lee N., Welsh M., and Culler D.,
“TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications”, In ACM SenSys,
Los Angeles, CA, 2003.

Litwin W., “Linear Hashing: A New Tool for File
and Table Addressing”, VLDB 1980: 212-223.

Lymberopoulos D., Savvides A., “XYZ: A
Motion-Enabled, Power Aware Sensor Node Plat-
form for Distributed Sensor Network Applica-
tions”, In IPSN, Los Angeles, pp. 449-454, 2005.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

Hong W., "The Design of an Acquisitional Query
Processor for Sensor Networks”, In ACM SIG-
MOD, San Diego, CA, USA, pp. 491-502, 2003.

Madden S.R., Franklin M.J., Hellerstein J.M.,
Hong W., “TAG: a Tiny AGgregation Service
for Ad-Hoc Sensor Networks”, In OSDI, Boston,
MA, pp. 131-146, 2002.

Sadler C., Zhang P., Martonosi M., Lyon S.,
“Hardware Design Experiences in ZebraNet”, In
ACM SenSys, Baltimore, pp. 227-238, 2004.

Shnayder V., Hempstead M., Chen B., Werner-
Allen G., and Welsh M., “Simulating the Power
Consumption of Large-Scale Sensor Network Ap-
plications”, In ACM SenSys, pp. 188-200, 2004.

Szewczyk R., Mainwaring A., Polastre J., Ander-
son J., Culler D., “An Analysis of a Large Scale
Habitat Monitoring Application”, In ACM Sen-
Sys, Baltimore, MD, pp. 214-226, 2004.

Yao Y., Gehrke J.E., "Query Processing in Sensor
Networks”, In CIDR, Asilomar, CA, USA, 2003.

Woodhouse D. “JFFS : The Journalling Flash
File System” Red Hat Inc., Available at:
http://sources.redhat.com/jffs2/jffs2.pdf

Wookey “YAFFS - A filesystem designed for
NAND flash”, Linux 2004 Leeds, U.K.

Ramakrishnan R., Gehrke J., Database Manage-
ment Systems, McGraw-Hill, Third edition, 2002.

“Sandisk Flash Memory Cards - Wear Level-
ing”, October 2003 White Paper, Avail-
able at: http://sandisk.com/pdf/loem/ WPaper-
WearlLevelvl.0.pdf

Live From Earth and Mars Project Uni-
versity of Washington, Seattle http://www-
k12.atmos.washington.edu/k12/grayskies/

Wu C-H., Chang L-P., Kuo T-W., “An Efficient R-
tree Implementation Over Flash-Memory Storage
Systems”, In RTCSA, Taiwan, pp. 409-430, 2003.

Wu C-H., Chang L-P., Kuo T-W., “An Efficient B-
Tree Layer for Flash Memory Storage Systems”,
In RTCSA, New Orleans, pp. 17-24, 2003.

Xu N., Rangwala S., ChintalapudiK., Ganesan D.,
Broad A., Govindan R. and Estrin D., “A Wire-
less Sensor Network for Structural Monitoring”,
In Sensys, Baltimore, MD, pp. 13-24, 2004.

