
The Threshold Join Algorithm for Top-k Queries in
Distributed Sensor Networks

D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras
University of California - Riverside

Riverside, CA, USA
{csyiazti, foula, dg, vana, tsotras}@cs.ucr.edu

M. Vlachos N. Koudas D. Srivastava
IBM T.J Watson Research University of Toronto AT&T Research Labs

Hawthorne, NY, USA Toronto, ON, Canada Florham Park, NJ, USA
vlachos@us.ibm.com koudas@cs.toronto.edu divesh@research.att.com

ABSTRACT
In this paper we present the Threshold Join Algorithm (TJA),
which is an efficient TOP-k query processing algorithm for
distributed sensor networks. The objective of a top-k query
is to find the k highest ranked answers to a user defined
similarity function. The evaluation of such a query in a sen-
sor network environment is associated with the transfer of
data over an extremely expensive communication medium.
TJA uses a non-uniform threshold on the queried attribute
in order to minimize the number of tuples that have to be
transferred towards the querying node. Additionally, TJA
resolves queries in the network rather than in a central-
ized fashion, which minimizes even more the consumption
of bandwidth and delay. Our preliminary experimental re-
sults, using our trace driven simulator, show that TJA is
both practical and efficient.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Top-K Queries, Sensor Networks, Distributed Systems

1. INTRODUCTION
The advances in wireless communications along with the

exponential growth of transistors per integrated circuit lead
to a rapid evolution of Wireless Sensor Devices (WSDs),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMSN’05, August 29, 2005, Trondheim, Norway.
Copyright 2005 ACM 1-59593-206-2/05/0008 ...$5.00.

that can be used for monitoring environmental conditions
at a high fidelity. WSDs are extremely resource constrained
devices with a limited energy budget [7, 8, 10]. Additionally,
the communication over the radio is orders of magnitude
more energy demanding than local processing.

In this paper we present the Threshold Join Algorithm
(TJA), which is an efficient TOP-k query processing algo-
rithm for distributed sensor networks. The objective of a
top-k query is to find the k highest ranked answers to a user
defined similarity function. An example of a top-k query
might be ”Find the three moments on which we had the high-
est average temperature in the last month?”. Our algorithm
is designed for queries where the user is not continuously
interested in having the k most relevant answers. For ex-
ample, biologists analyzing a forest might be interested in
long-term monitoring that will allow them to understand
changes and conditions over long periods of time. Therefore
sensors can keep sensor readings locally and transmit their
readings to a sink selectively, when certain preconditions are
met, or when the sensors receive a query over the radio.

Since the execution of a query is typically associated with
the transfer of data over the extremely expensive network
medium, TJA’s objective is to minimize this burden by
transferring fewer readings to the sink and to execute in a
fixed number of round trips. This keeps the radio less busy
which results in tremendous energy savings. Additionally,
TJA resolves queries in the network rather than in a cen-
tralized fashion, which further minimizes the consumption
of bandwidth and delay.

The requirement of an efficient top-k query processing al-
gorithm for WSDs, becomes evident in environments where
most of the sensor readings are kept in-situ (at the generat-
ing sensor). This creates a network of tiny databases [12, 10]
as opposed to the prevalent model of a centralized database
that collects readings from many sensors [8]. The presented
solutions are developed in the context of the RISE (River-
side Sensor) hardware platform [10], which is a wireless sen-
sor platform with an external SD Media card which accom-
modates each sensor with several MBs of storage.

2. PROBLEM DEFINITION
In this section we will formalize our basic terminology.

v1 v2 v3 v4 v5 TOP-5
oid,val oid,val oid,val oid,val oid,val oid,val

o3, .99 o1, .91 o1, .92 o3, .74 o3, .67 o3, 4.05/5 = .81
o1, .66 o3, .90 o3, .75 o1, .56 o4, .67 o1, 3.63/5 = .73
o0, .63 o0, .61 o4, .70 o2, .56 o1, .58 o4, 2.07/5 = .41
o2, .48 o4, .07 o2, .16 o0, .28 o2, .54 o0, 1.88/5 = .32
o4, .44 o2, .01 o0, .01 o4, .19 o0, .35 o2, 1.75/5 = .29

Table 1: The local scores of five objects o1..o5 which
are located at nodes v1..v5. The last column displays
the sum of scores (overall rank).

Let R be a relation with n attributes s1, s2, . . . , sn, each
featuring m objects o1, o2, . . . , om. The jth attribute of the
ith object is denoted as oij . Also let G(V, E) denote an undi-
rected network graph that interconnects the n vertices in V

using the edge set E. The edges in E, represent the con-
nections between the vertices in V (the set of sensor nodes).
We assume that each vertex is connected to only d (d << n)
other vertices (i.e. the average degree of the graph is d).
Now assume that each sensor si is mapped to the elements
of the vertex set V = {v1, v2, . . . , vn} using a 1:1 mapping
function f : si → vi, ∀i. This happens because each sensor
maintains only local information (i.e. a single dimension in
the n-dimensional space).

Consider Q = (q1, q2, . . . , qn), a top-k query with n at-
tributes. Each attribute of Q refers to the corresponding
attribute of an object and the query attempts to find the
k objects which have the maximum value in the following
scoring function:

Score(oi) =
n

X

j=1

wj ∗ sim(qj , oij) (1)

where sim(qj , oij), is a similarity function which evaluates
the jth attribute of the query Q against the jth attribute
of an object oi and returns a value in the domain [0,1] (1
denotes the highest similarity). Since each attribute might
have a different factor of importance, we also use a weight
factor wj (wj > 0), which adjusts the significance of each
attribute according to the user preferences. For instance, if
the readings acquired by node vl in the network are more
important than the readings acquired by the other nodes
then wl might be set to a large value. Note that, simi-
larly to [5, 1], we require the score function to be monotone.
A function is monotone if the following property holds: if
sim(qj , o1j)>sim(qj , o2j) (∀j∈n) then Score(o1)>Score(o2).
This is true when wj > 0 (∀j∈n).

For example, suppose that we have a collection of tempo-
ral climate objects from three sensors s1, s2 and s3 at two
time moments o1:(s1=100F, s2=90F, s3=80F) and o2:(s1=
100F , s2=70F , s3=80F) and each attribute is of the same
importance (i.e. wj=1 ∀j). Furthermore assume that the
distance function sim(qj , oij) represents the percentage of
similarity to the most similar object in dimension j. Given
that some function max calculates the highest temperature
in a given dimension, the top-1 object to the query Q=
(max(temp), max(temp), max(temp)), would be o1 because
Score(o1)=3.0 (i.e. 1*1.0 + 1*1.0 + 1*1.0) and Score(o2)=
2.77 (i.e. 1*1.0 + 1*0.77 + 1*1.0).

3. RELATED WORK
There has been a lot of work in the area of top-k query

processing in the database community. In this section we

provide a brief overview of the proposed algorithms. For
ease of exposition, we use a generic example which captures
the problem setting of the described algorithms. Our setting
includes five nodes (v1..v5) each of which maintains locally
the scores of five objects (o0..o4). On table 1, we print the
local scores of the five objects (ordered by highest score).
The task is to find the one object which maximizes the sum
of local scores across all sensors (i.e. o3).

A querying node QN , can easily compute an answer to
the top-1 query by first transferring all m ∗ n oij pairs to
itself, then perform a local join, and finally extract the de-
sired results. Assuming that each node transmits its local
scores to QN either directly or over a multi-hop network,
this approach would require

Pn
i=0 δ(vi)∗m messages, where

δ(vi) is the depth of node vi from QN . Obviously this al-
gorithm, denoted as the Centralized Join Algorithm (CJA),
is extremely expensive in practice. However when interme-
diate nodes perform some local aggregation similarly to [7],
then this cost can be reduced to (n−1)·m which is essentially
one message per edge (let this be denoted as the Staged Join
Algorithm (SJA)). An important problem is that in our en-
vironment the value m might be arbitrary large. Therefore
this approach might still be quite expensive for large-scale
environments or when the query window m is large.

The Fagin Algorithm (FA) [5], is one of the first top-k
query processing algorithms over middleware systems which
interact with a number of autonomous data sources. In FA,
QN performs a two phase retrieval which consists of a sorted
access and random access phase. Initially, QN accesses the
n lists in parallel until it locates k objects which belong to
all lists. In our working example, this would be equivalent to
retrieving the first two rows of the table. QN then requests
from each node to send the score for any object whose score
could not be computed exactly (i.e. o1 and o4). Assuming
a star topology, FA has with very high probability a cost of
O(m(n−1)/n · k1/n). However in a distributed environment,
FA’s execution is quite inefficient as the sorted phase might
take an arbitrary large number of round trips. Additionally,
the fact that each list is accessed at the same depth during
the sorted phase, results in the retrieval of a large number
of unnecessary object scores.

The most widely recognized algorithm for top-k queries in
a centralized environment is the Threshold Algorithm (TA) [5].
TA starts out by performing a parallel sorted access to the
n lists. While an object oi is seen by QN , TA performs a
random access to the other lists to find the exact score for oi

(i.e.
Pn

j=1 oij). After finding the exact score for each object

in the current row1, it computes a threshold value τ as the
sum of all exact scores in the current row. The algorithm
stops after k objects have been found with a score above τ .
While the TA algorithm accesses less objects than FA, it
also uses more round trips as it invokes several small ran-
dom accesses. This would again translate into an arbitrary
large number of phases, which is highly undesirable for a
hierarchical environment.

Top-k algorithms have also been studied in other settings
where the pruning of the retrieval space is highly desirable.
Bruno et al. [1] discuss the problem of answering top-k
queries over web accessible databases. The problem of con-
tinually providing top k answers in a distributed environ-
ment is discussed in [2]. The problem is tackled by installing

1Sorted access is executed on a row-at-a-time basis

arithmetic constraints at each node which define the current
top-k scores at any point. The problem was later extended
to hierarchical environments [4]. The TPUT[3] algorithm
proposed by Cao and Wang, uses three phases in order to
resolve top-k queries in star topologies. The algorithm con-
structs a bound which is uniform for all lists, similarly to
FA, which is too coarse in practice.

Finally the very recent work in [9], examines the problem
of approximate top-k queries in distributed environments.
The paper assumes that each node maintains an approxima-
tion of the local scores instead of the actual scores. The ap-
proximation essentially consists of an equi-width histogram
on the local scores along with a bloom filter per histogram
bucket which captures object identifiers inserted into the
specific bucket.

Most of the above approaches assume a star communica-
tion topology, in which all nodes are directly accessible by
the querying entity. On the other hand, in our work we
focus on the challenges of a hierarchical topology which is
ubiquitous in sensor network environments. Specifically, our
contributions can be summarized as following: i) We study
the feasibility and applicability of top-k queries in hierar-
chical networks, ii) We propose the TJA algorithm which
is a new algorithm that resolves top-k queries in a hierar-
chical environment using a fixed number of phases. iii) We
propose methods for in-network query processing of top-k
queries which reduces network traffic.

4. THE TJA ALGORITHM
We now introduce TJA, which is an efficient top k query

processing algorithm for Sensor Networks. For clarity, we
will refer to the collection of local scores at each node vi,
as list(vi). TJA decreases the number of objects that are
required to be transmitted from each list(vi), by using an
additional probing and filtering phase. In addition, the al-
gorithm seeks to optimize the use of the network resources
by pushing computation into the network. More specifically,
the algorithm consists of three phases: i) the Lower Bound
phase, in which the querying node finds a lower bound on
the lists by probing the nodes in a network ii) the Hierarchi-
cal Joining phase, in which each node uses the lower bound
for eliminating the objects that are below this bound and
join the qualifying objects with results coming from children
nodes and iii) the Clean-Up phase, in which the actual top-k
results are identified. The three phases of the algorithm are
presented below:

4.1 Lower Bound (LB) Phase

This phase identifies a set of objects that are used to con-
struct a threshold. The top-k results are guaranteed to have
a score above this threshold. The phase works by having
each node vi sort in descending similarity order the elements
in list(vi). vi then extracts from the sorted list(vi), the ob-
jectIDs of the k local highest ranked objects (we denote this
new set as listk(vi)). As soon as some vertex vi receives
listk(vj) from all its children vj , it performs a union of all
collected lists and creates a partial lower bound L(vi), with
the following function:

L(vi) = listk(vi)
[

(
[

∀j∈children(vi)

listk(vj))

L(vi) is then propagated to the parent of vi and when this re-

cursive operation terminates, the querying node will receive
a list of object identifiers that define the complete lower
bound LqueryNode=Ltotal={l1, l2, . . . , lo}, o ≥ k.

Consider our working example in table 1 (which is also
summarized in figure 1c). Assume that the querying node is
v1, and that it issues the top-1 query: “Find the time mo-
ment with the highest average temperature.” We note that
it is easy to express such a query in our framework, by set-
ting wj = 1 and setting sim(qj , oij) equal to the normalized
temperature of node i at time j (this is equivalent to asking
for the time moment with a vector closest to (1,..,1)).

In figure 1a, we illustrate the query spanning tree of the
LB phase. Each node sends its top value: list1(vi) for the
vertices v1, v2, v3, v4, v5 is o3, o1, o1, o3 and o3 respectively.
In our working example the lower bound is Ltotal={o1, o3}.
The figure shows how each intermediate node vi calculates
the partial lower bound L(vi). For example at node v4, we
perform the following union L(v4) = {o3 ∪ o3}, therefore v4

is only required to propagate o3 to v2 rather than all the
pairs in its local list.

4.2 Hierarchical Join (HJ) Phase

In the second phase the querying node propagates Ltotal

to all nodes in the network, possibly by using the same hi-
erarchy created in the LB phase. This requires only n − 1
messages, where n is the number of nodes in the network.
Each node receiving Ltotal, searches its local sorted list(vi)
in order to identify the index of the lowest ranked object
that belongs to Ltotal. More precisely, a procedure Find-
MinRank locates the lowest ranked object that belongs to
Ltotal. All objects above idx are candidates for the result.

1: procedure findMinRank(Ltotal, list(vi))
2: idx = −1
3: for j = 1 to |Ltotal| do
4: if (idx < rank(Ltotal[j], list(vi)) then

5: idx = rank(Ltotal[j], list(vi))
6: end if

7: end for
8: return idx

9: end procedure

In the next step, each node uses the locally generated idx

in order to extract the top-idx from its sorted list(vi). Let
listidx(vi) denote the set of oij pairs generated by this pro-
cedure. If a node is a leaf node, it simply forwards listidx(vi)
towards its parent. Otherwise a node waits until it receives
all listidx(vj) from one of its children vj , at which point it
performs a full outer join using the FullOuterJoin procedure
illustrated next. We note that in a full outer join of two re-
lations A and B, in addition to the rows that join on the
objectID, the rows of both A and B without a match also
appear in the result. However, the rows that don’t match
in both A and B, are marked with a incomplete flag. Below
we present how FullOuterJoin (

U

) works:

R(vi) = listidx(vi)
]

(
]

∀j∈children(vi)

listidx(vj))

The above procedure creates a local partial result R(vi).
During this computation the algorithm computes a partial
score for each object oj in R(vi). If object oj appears in the
result list of vi and in the result list of all its children this
partial score can be computed exactly using formula 1. If on

v1

v3

v2

v4

v5

5:

3:

2,3,4,5:

TJA
1) LB Phase

4,5:

4
U

5

2,3
U

4,5

U

1

1,2,3,4,5
Ltotal
{1,3}

Occupied O ij

Empty O ij

TJA
2) HJ Phase

v1

v3

v2

v4

v5

5:

3:

2,3,4,5:

4,5:

4 5

2,3 4,5

1,2,3,4,5
R

total
{1,3,4}

Occupied O ij

Empty O ij

Incomplete O ij

U+

U+

U+

v1 v2 v3 v4 v5

o3,.99
o1,.66
o0,.63
o2,.48
o4,.44

o1,.91
o3,.90
o0,.61
o4,.07
o2,.01

o1,.92
o3,.75
o4,.70
o2,.16
o0,.01

o3,.74
o1,.56
o2,.56
o0,.28
o4,.19

o3,.67
o4,.67
o1,.58
o2,.54
o0,.35

LB HJ CL

Figure 1: The Query Spanning Tree for the phases of the TJA Algorithm: 1) Lower Bound (LB), 2) Hierar-
chical Join (HJ) and 3) The table shows the objects qualifying in each phase. The Clean-Up (CL) Phase is
omitted as it does not contribute to the final result.

the other hand, oj does not appear in all of the lists (and so
it is marked as incomplete by the FullOuterJoin procedure),
the algorithm computes an upper bound estimation on the
score.

For example if object ol does not appear in the result list
of some node vi, we compute an upper bound on the partial
score of ol by substituting sim(qi, oil) with mina∈listidx(vi)[
sim(qi, a)]. Before forwarding its result list, vi marks (us-
ing an extra bit) those score computations that are upper
bounds (to differentiate them from the exact partial scores).
vi then forwards R(vi) to its parent and when this recursive
operation terminates, the querying node will receive a super-
set of the final top-k result RqueryNode=Rtotal={r1, r2, . . . ,

ro}, o ≥ k.
In our working example the superset result is Rtotal =

{(o1, 3.63), (o3, 4.05), (o′4, 3.54)} and the querying node just
extracts the highest rank answer o3 which is the result with
the highest score. In figure 1b, we illustrate the QST for the
HJ phase of our working example. The figure shows how
each intermediate node vi calculates the partial result R(vi).
At node v4, the full outer join of listidx(v4) = {(o3, .74),
(o1, .56)} and listidx(v5) = {(o3, .67), (o4, .67), (o1, .58)}
generates the following partial result R(v4) = {(o3, 1.41),
(o1, 1.14), (o′4, 1.23)}, were the result for o4 is an upper
bound, and the others are marked as exact.

4.3 Clean-Up (CL) Phase

In the last phase of the algorithm the querying node has
collected a list of objects for which either the complete score
or an upper bound of this score has been computed.

The querying node finds those objects that have upper
bounds higher than the k-th complete result and computes
the exact scores for these by requesting the exact scores from
its children. We note that this request has to be forwarded
only to those nodes that send an upper bound to the scores
of these objects. Each node receiving a clean-up request
uses the function objectsR′(vi), which fetches from the local
storage of node vi all objects in R′. As soon as vi retrieves
the list objectsR′(vj) from each child vj , it joins all collected
lists and creates a full score for each object in R′. This is

illustrated using the below function:

C(vi) = objectsR′(vi) 1 (1
∀j∈children(vi)

objectsR′(vj))

When the querying node receives Ctotal, it computes the
final top-k answers. This is achieved by joining Ctotal with
Rtotal, where Rtotal is the partial result generated in the HJ
phase. In our example the querying node has calculated an
upper bound of 3.54 for o4, which is less than the score of
o3 (i.e. 4.05), and so the querying node does not have to
execute the CL phase.

4.4 Discussion
The advantage of the TJA algorithm over other query

processing algorithms such as TA and FA is twofold:

1. Instead of performing random accesses for individual
objects, TJA performs them all together in the clean-
up phase. This minimizes the number of messages,
and therefore also the number of transmitted bytes2.
Additionally, it also minimizes the delay to find the
expected answer.

2. By structuring the communication into three phases,
we are able to increase aggregation in the query tree
hierarchy. This happens because individual random
accesses yield less aggregation than by combining sev-
eral random accesses.

5. EXPERIMENTAL EVALUATION
In this section we describe our experimental framework

which consists of a distributed trace-driven simulator writ-
ten in Java that implements CJA, SJA and TJA. Our evalu-
ation focuses on the number of transmitted bytes, the num-
ber of messages and the required time to obtain the final
result in our simulation environment. While our simulation
environment does not allow us to obtain fine-grained execu-
tion time, it allows us to relatively compare the algorithms.

In all cases, the presented algorithms return exactly the
same result with what is returned by evaluating the query
over a centralized collection of lists. In the case where the

2Note that each message has a fixed overhead (a header)

network suffers from failures, we also study the average error
of the algorithms, that is, how far are the results from the
correct ones.

Our experiments are based on a real dataset of atmo-
spheric data collected at 32 sites in Washington and Oregon,
by the Department of Atmospheric Sciences at the Univer-
sity of Washington.3 More specifically, each of the 32 sites
maintains the average temperature on an hourly basis for
208 days between June 2003 and June 2004 (i.e. 4990 time
moments).

In our configuration each message has a 23 bytes header,
which includes the unique identifier of the message, the pay-
load size (i.e. how many objects are packed in the message),
as well as other implementation specific parameters. Each
element in list(vi) (i.e. an oij pair), requires 8 byte (oid=4
bytes, val=4 bytes) and these pairs are consecutively packed
after the message header. Our query is to find the three
hours (moments), at which the average temperature among
all monitors was maximum. Our network topology consists
of a connected random graph with average degree d = 4 and
diameter 6.

5.1 Performance Evaluation
In figure 2a (f=0)4, we plot the number of required bytes

for the three algorithms when there are no failures in the
network. The figure indicates that TJA requires an order of
magnitude less bytes than SJA for calculating the results.
More specifically TJA requires 355KB while SJA and CJA
require 1.28MB and 4.4MB respectively. Figure 2b (f=0),
displays the respective time for the three algorithms. As
we can see TJA calculates the top k result in only 3,797
ms (LB=1,059ms, HJ=2,730ms and CL=8ms) while SJA
requires 8,224 ms and CJA 18,666 ms. Finally in figure 2c
(f=0), we plot the number of messages. The figure indicates
that TJA requires more messages than SJA. More specifi-
cally TJA requires 246 messages while CJA requires 259
messages and SJA 183 messages. However it is important
to mention that most of the messages used by TJA are small
in size.

5.2 Experimentation under Failures
Node failures, battery lifetime and collisions at the MAC

layer generate a dynamic environment in which sensors ap-
pear to be leaving or joining the network in an ad-hoc man-
ner. This might not allow the querying node to obtain the
correct top-k results during its execution. Therefore we de-
fine the Average Error function Φ, that measures the error
in the rank of the each object oi compared to its real rank
(the one obtained in a stable environment). Formally Φ is
defined as:

Φ =
1

k
∗

k
X

i=0

penalty(oi) (2)

where penalty(oi) is equal to realrank(oi) − rank(oi) if
realrank(oi) > rank(oi) or zero otherwise. Note that realrank(oi)
is obtained by running a top-k algorithm locally while rank(oi)
is obtained from the results coming from the network. We
simulate failures by disconnecting nodes randomly and uni-
formly across the network and then join them back after
some fixed interval. At any given moment the percentage

3http://www-k12.atmos.washington.edu/k12/grayskies/ .
4The rest f values will be discussed in the next subsection.

of disconnected nodes is statistically no more than a given
threshold f .

The plots in figure 2, show the number of bytes, the re-
quired time and the number of messages utilized by each
of the described techniques when the failure factor is set
to 10%, 20% and 30% respectively. The graphs indicate
that in all techniques the number of bytes and messages de-
creases linearly with increasing failures because more nodes
tend to loose their parents. On the other hand the required
time to execute a query under failures increases for SJA
and TJA. This happens because each node vi has a timer
τvi

=τmax∗ttl(vi), where τmax is a given threshold and ttl(vi)
the time-to-live parameter taken from the query when it ar-
rives at vi. This decreases the waiting period of nodes deeper
in the QST hierarchy. Nodes in CJA on the other hand do
not use any timer as messages might arrive from an arbitrary
large number of nodes (not just the children) and therefore
the waiting does not remain fixed.

Finally in figure 2c we plot the Φ parameter for the dif-
ferent failure thresholds. The figure shows that TJA always
achieves excellent resilience Φ < 1. This means that the rank
of each results is on average less than one position wrong.
On the other hand CJA and SJA have a larger Φ value be-
cause they take longer to complete and therefore miss more
results.

6. CONCLUSION & FUTURE WORK
In this paper we study the problem of finding the k highest

rank answers to user query in a sensor network environment.
We propose the TJA algorithm which is a new algorithm for
resolving top-k queries in a hierarchical environment using a
fixed number of phases. We additionally deploy in-network
aggregation to minimize the utilization of the network. Our
preliminary results showed that our approach is both effi-
cient and practical. We believe that our algorithm will be
a useful component for query processing engines of sensor
data management systems. We are currently developing a
prototype of our algorithm in nesC and plan to evaluate its
efficiency using the RISE sensor [10].

7. REFERENCES
[1] N. Bruno, L. Gravano and A. Marian, “Evaluating

Top-k Queries Over Web Accessible Databases”, In
Proceedings of the 18th International Conference on
Data Engineering, San Jose, CA, USA, Pages 369,
2002.

[2] B. Babcock and C. Olston, “Distributed Top-K
Monitoring”, In Proceedings of the ACM SIGMOD
international conference on Management of data, San
Diego, CA, USA, Pages 28-39, 2003.

[3] P. Cao and Z. Wang, “Efficient Top-K Query
Calculation in Distributed Networks”, In Proceedings
of the twenty-third annual ACM symposium on
Principles of distributed computing, St. John’s,
Newfoundland, Canada, Pages 206-215, 2004.

[4] A. Deligiannakis, Y. Kotidis, N. Roussopoulos
“Hierarchical in-Network Data Aggregation with
Quality Guarantees”, In 9th International Conference
on Extending Database Technology, Heraklion,
Greece, March 14-18, Pages 658-675, 2004.

[5] R. Fagin, “Combining Fuzzy Information from
Multiple Systems”, In Proceedings of the fifteenth

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

f=0 f=10 f=20 f=30

N
um

be
r

of
 b

yt
es

 in
 K

B

Failure Threshold f

Bytes using the Atmon Dataset

CJA

SJA

TJA

 0

 5000

 10000

 15000

 20000

 25000

f=0 f=10 f=20 f=30

T
im

e
in

 M
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

Failure Threshold f

Time using the Atmon Dataset

CJA

SJA

TJA

 100

 150

 200

 250

 300

f=0 f=10 f=20 f=30

M
es

sa
ge

s

Failure Threshold f

Messages using the Atmon Dataset

CJA

SJA

TJA

1

2

3

4

f=10 f=20 f=30

A
ve

ra
ge

 E
rr

or
 Φ

Failure Threshold f

Average Error Φ using the Atmon Dataset

CJA

SJA

TJA

Figure 2: a) Bytes, b) Time, c) Messages and d) Average Error Φ for failure thresholds (0.0, 0.1, 0.2 & 0.3).
The figures indicate that TJA requires an order of magnitude less bytes than SJA for calculating the results.
TJA also minimizes the query execution time and works well under failures. The fact that TJA executes in
three, rather than one phase, slightly increases the number of messages. However these messages are smaller
than the huge and monolithic messages utilized by CJA and SJA.

ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, Montreal, Quebec,
Canada, Pages 216-226, 1996.

[6] R. Fagin, A. Lotem and M. Naor, “Optimal
Aggregation Algorithms For Middleware”, In
Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, Santa Barbara, CA,
USA, Pages 102-113, 2001.

[7] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong. “TAG: a Tiny AGgregation Service for
Ad-Hoc Sensor Networks”, In Proceedings of the 5th
symposium on Operating systems design and
implementation, Boston, MA, USA, Pages 131-146,
2002.

[8] S.Madden, M.Franklin, J.Hellerstein, W.Hong, “The
Design of an Acquisitional Query Processor for
Sensor Networks”, In Proceedings of the 2003 ACM
SIGMOD international conference on Management
of data, San Diego, CA, USA, Pages 491-502, 2003.

[9] S. Michel, P. Triantafillou, G. Weikum “KLEE: A
Framework for Distributed Top-k Query
Algorithms”, In 31st conference in the series of the
Very Large Data Bases, Trondheim, Norway, 2005.

[10] S. Neema, A. Mitra, A. Banerjee, W. Najjar, D.
Zeinalipour-Yazti, D. Gunopulos, V. Kalogeraki,
“NODES: A Novel System Design for Embedded
Sensor Networks”, Demo at 4th International
Symposium on Information Processing in Sensor
Networks, Los Angeles, CA, USA, April 25-27, 2005.

[11] Y. Yao, J.E. Gehrke, “Query Processing in Sensor
Networks”, In First Biennial Conference on
Innovative Data Systems Research, Asilomar, CA,
USA, January 5-8, 2003.

[12] D. Zeinalipour-Yazti, S. Neema, D. Gunopulos, V.
Kalogeraki and W. Najjar, “Data Acquision in
Sensor Networks with Large Memories”, In 1st IEEE
International Workshop on Networking Meets
Databases, Tokyo, Japan, April 8-9, 2005.

