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ABSTRACT
The paper presents distributed and parallel δ-approximation
algorithms for covering problems, where δ is the maximum
number of variables on which any constraint depends (for
example, δ = 2 for vertex cover).

Specific results include the following.
• For weighted vertex cover, the first distributed 2-ap-

proximation algorithm taking O(logn) rounds and the first
parallel 2-approximation algorithm in RNC. The algorithms
generalize to covering mixed integer linear programs (CMIP)
with two variables per constraint (δ = 2).
• For any covering problem with monotone constraints

and submodular cost, a distributed δ-approximation algo-
rithm taking O(log2 |C|) rounds, where |C| is the number of
constraints. (Special cases include CMIP, facility location,
and probabilistic (two-stage) variants of these problems.)

Categories and Subject Descriptors
G.2.2 [DISCRETE MATHEMATICS]: Graph Theory—
Graph algorithms, Hypergraphs; F.2.2 [ANALYSIS OF
ALGORITHMS AND PROBLEM COMPLEXITY]:
Nonnumerical Algorithms and Problems—Computations on
discrete structures

General Terms
Algorithms Theory
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1. BACKGROUND AND RESULTS
Many distributed systems are composed of components that
can only communicate locally, yet need to achieve a global
(system-wide) goal involving many components. The gen-
eral possibilities and limitations of such systems are widely
studied [29, 34, 36, 24, 25, 7]. It is of specific interest to
see which fundamental combinatorial optimization problems
admit efficient distributed algorithms that achieve approxi-
mation guarantees that are as good as those of the best cen-
tralized algorithms. Research in this spirit includes works
on dominating set (set cover) [17, 26, 27], capacitated
dominating set [23], capacitated vertex cover [8, 9],
weighted matching [39, 15, 31, 30] and many other prob-
lems (some discussed below).

Covering problems are of broad interest in the field of ap-
proximation algorithms. This work studies distributed δ-ap-
proximation algorithms for monotone covering problems,
that is, problems of the form

Find x ∈ IRn
+ minimizing c(x) subject to (∀S ∈ C) x ∈ S.

The cost function c : IRn
+ → IR+ must be non-decreasing,

continuous, and submodular1 Each constraint set S ∈ C
must be monotone (closed upwards) and closed under limit
[22]. Here δ is the maximum number of variables (in x) on
which any constraint x ∈ S depends.

Although x ranges over IRn
+, one can handle restrictions

on the variable domains by incorporating them into the con-
straints [22].

Special cases include: CIP (covering integer programs
with variable upper bounds, of the form min{c · x : Ax ≥
b;x ∈ ZZm

+ , x ≤ u}); CMIP (covering mixed integer linear
programs — CIP with both integer and fractional variables);
facilities location; weighted set cover (CIP with Aij ∈
{0, 1}, bi = 1); weighted vertex cover (weighted set
cover with δ = 2); and probabilistic (two-stage stochastic)
variants of these problems.

In the centralized (non-distributed) setting there are two
well-studied classes of polynomial-time approximation algo-
rithms for covering problems: (i) O(log ∆)-approximation
algorithms where ∆ is the maximum number of constraints
in which any variable occurs (e.g. [18, 32, 6, 37, 38, 21]),
and (ii) O(δ)-approximation algorithms where δ is the max-
imum number of variables in any constraint (e.g. [1, 13, 14,
2, 11, 4, 3, 22]), including most famously 2-approximation
algorithms for weighted vertex cover.

Our focus is on distributed algorithms in the second class.

1Formally,c(x) + c(y) ≥ c(x ∧ y) + c(x ∨ y) where ∧ and ∨
are component-wise minimum and maximum, respectively.



Distributed δ-approximation algorithms. In the dis-
tributed setting, in the case of unweighted vertex cover
(vertices have uniform weights), a 2-approximate solution
can be found efficiently by computing any maximal match-
ing and then taking the cover to contain the endpoints of
the edges in the matching. A maximal matching can be
computed deterministically in O(log4 n) rounds using the
algorithm of Hańćkowiak, Karonski and Panconesi [12] or in
O(∆ + log∗ n) rounds using the algorithm of Panconesi and
Rizzi [35], where ∆ is the maximum vertex degree. Using
randomization, a maximal matching can be computed in an
expectedO(logn) rounds via the algorithm of Israeli and Itai
[16]. Maximal matching is also in NC [5, 33, 19] and in RNC
(parallel poly-log time with polynomially many randomized
processors) [16] and so is 2-approximate unweighted ver-
tex cover.

For weighted vertex cover, no such result is known.
The first distributed approximation algorithm for weighted
vertex cover (and weighted set cover) appeared in 1994
by Khuller, Vishkin and Young [20]. It takesO(δ logn log 1/ε)
rounds to produce a δ(1 + ε)-approximation (δ = 2 for
weighted vertex cover). Assuming the vertex weights

are integers, taking ε = 1/(nĈ + 1), where Ĉ is the average
vertex weight, the algorithm can compute a δ-approximate
cover in O(δ logn(logn+ log Ĉ)) rounds.

Grandoni, Konemann and Panconesi give a distributed 2-
approximation algorithm for weighted vertex cover that
takes O(logn+ log Ĉ) rounds [10]. Their algorithm assumes
integer vertex weights.

As noted in [24], neither algorithm takes a number of
rounds that is poly-logarithmic in the number of vertices.
Also, there was no previously known parallel 2-approxima-
tion NC or RNC algorithm (running in time poly-logarithmic
in the number of vertices with polynomially many proces-
sors).

Kuhn, Moscibroda and Wattenhofer describe distributed
approximation algorithms for fractional covering (and pack-
ing) linear programs [25]. Their algorithms give constant-
factor approximations in O(log |C|) rounds, where |C| is the
number of covering constraints. The approximation ratio is
greater than 2 for the case of fractional weighted ver-
tex cover. For (integer) weighted vertex cover and
weighted set cover (where each Aij ∈ {0, 1}) combining
their algorithms with randomized rounding gives O(log ∆)-
approximate integer solutions in O(logn) rounds, where ∆
is the maximum number of constraints in which any variable
occurs.

The best known lower bounds for weighted vertex cover
are by Kuhn, Moscibroda and Wattenhofer [24]. They prove
that to achieve even a polylogarithmic approximation ratio
for vertex cover, the number of rounds required is at least
Ω(
√

logn/ log log n) and Ω(log ∆/ log log ∆).

Results. For monotone covering, we give distributed
δ-approximation algorithms that are efficient, in that they
finish in a number of rounds that is poly-logarithmic in the
network size [29]:

Section 2 describes the first efficient distributed 2-approx-
imation algorithm for weighted vertex cover. The
algorithm runs in O(logn) rounds in expectation and
with high probability. This algorithm is easily paral-
lelized, giving the first 2-approximation algorithm for
weighted vertex cover in RNC.

Section 3, generalizing the above result, describes the first
efficient distributed 2-approximation algorithm for CMIP
(covering mixed integer linear programs with variable
upper bounds) where each constraint depends on at
most two variables (δ = 2). The algorithm runs in
O(log |C|) rounds in expectation and with high proba-
bility, where |C| is the number of constraints. This also
gives a parallel (RNC) 2-approximation algorithm.

Section 4 describes the first efficient distributed δ-approx-
imation algorithm for monotone covering. The al-
gorithm runs in O(log2 |C|) rounds in expectation and
with high probability, where |C| is the number of con-
straints.

Special cases include CMIP, facilities location, weighted
set cover, weighted vertex cover (weighted set
cover with δ = 2), and probabilistic (two-stage stochas-
tic) variants of these problems. Previously, no effi-
cient distributed O(δ)-approximation algorithm was
known for CIP, and no efficient distributed δ-approxi-
mation algorithm was known even for weighted ver-
tex cover.

Each of the algorithms we present here is a distributed im-
plementation of a (centralized) δ-approximation algorithm
for monotone covering by Koufogiannakis and Young [22].
In each section, we describe how that centralized algorithm
specializes for the problem in question, then describe an ef-
ficient distributed implementation.

2. WEIGHTED VERTEX COVER

Theorem 1. For weighted vertex cover:

(a) There is a distributed 2-approximation algorithm run-
ning in O(logn) rounds in expectation and with high proba-
bility.

(b) There is a parallel 2-approximation algorithm in “Las
Vegas” RNC.

Centralized algorithm
For weighted vertex cover, the centralized algorithm by
Koufogiannakis and Young [22] is equivalent to a classical
2-approximation algorithm by Bar-Yehuda et al. [1].

The algorithm starts with x = 0. To cover edge (v, w), it
calls step(x, (v, w)), which raises xv and xw at rates inversely
proportional to their respective costs, until xv or xw reaches
1 (increase xv by β/cv and xw by β/cw, where β = min{(1−
xv)cv, (1−xw)cw}). When a variable xv reaches 1, v is added
to the cover. The algorithm stops when all edges are covered.

The algorithm returns a 2-approximate cover by the fol-
lowing argument. Fix any optimal integer solution x∗. Each
call to step(x, e) increases the cost of x by at most 2β but
decreases the potential

∑
v cv max(0, x∗v − xv) by at least β.

Distributed implementation
In each round, the distributed algorithm performs step(x, e)
simultaneously on a large subset of the not-yet-covered edges,
as follows. Each node randomly chooses to be a leaf or a root.
A not-yet-satisfied edge (v, w) is called active if v is a leaf, w
is a root and if step(x, (v, w)) were to be performed, v would
enter the cover. Each leaf v chooses a random active edge
(v, w). The edges chosen by the leaves are called star edges;
they form stars with roots at their centers.



distributed 2-approximation algorithm for Weighted Vertex Cover (G = (V,E), c : V → IR+) alg. 1

1. At each node v: initialize xv ← 0.
2. Until all vertices are finished, perform rounds as follows:
3. At each node v: if all of v’s edges are covered, finish; else, choose to be a leaf or root, each with probability 1/2.
4. At each leaf node v: Label each not-yet covered edge (v, w) active if w is a root and step(x, (v, w))

(with the current x) would add v to the cover. Choose, among these active edges, a random star edge (v, w).

5. At each root node w, flip a coin, then run the corresponding subroutine below:
heads(w): For each star edge (v, w) (in some fixed order) do: if w is not yet in the cover, then do step(x, (v, w)).
tails(w): Do step(x, (v, w)) just for the last edge for which heads(w) would do step(x, (v, w)).

step(x, (v, w)):
1. Let scalar β ← min

(
(1− xv)cv, (1− xw)cw

)
. . . . just enough to ensure v or w is added to the cover below

2. Set xv = xv + β/cv. If xv = 1, add v to the cover, covering all of v’s edges.
3. Set xw = xw + β/cw. If xw = 1, add w to the cover, covering all of w’s edges.
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Figure 1: Each node is labeled with its cost. Roots
are circles; leaves are squares; star edges from leaves
other than v (the cost-5 leaf) are determined as
shown. Each edge (v, w) is labeled with the chance
that v would enter the cover if v were to choose (v, w)
for its star edge (assuming each xw = xv = 0 and each
root w considers its star edges counter-clockwise).

Each root w then flips a coin. If heads comes up (with
probability 1/2), w does heads(w): that is, it does step(x, (v, w))
for its star edges (v, w) in any order, until w enters the
cover or all of w’s star edges have steps done. Or, if tails
comes up, w does tails(w): that is, it simulates heads(w),
without actually doing any steps, to determine the last edge
(v, w) that heads(w) would do a step for, and performs step
step(x, (v, w)) for just that edge. For details see Alg. 1.

Analysis of the number of rounds. We show that, in
each round, a constant fraction of the not-yet-covered edges
are covered in expectation, proving part (a) of the theorem.

Any not-yet-covered edge (v, w) is active for the round
with constant probability, because step(x, (v, w)) would bring
at least one of v or w into the cover, and with probability
1/4 that node is a leaf and the other is a root. So, with con-
stant probability a constant fraction of the remaining edges
are active. Assume this happens. Next, condition on all the
choices of leaves and roots (assume these are fixed).

It is enough to show that, for an arbitrary leaf v, in expec-
tation a constant fraction of v’s active edges will be covered.
To do so, condition on the star edges chosen by the other
leaves. (Now the only random choices not conditioned on
are v’s star-edge choice and the coin flips of the roots.)

(At least) one of the following two cases must hold.
Case 1: A constant fraction of v’s active edges (v, w) have
the following property: if v were to choose (v, w) as its star

edge, and w were to do heads(w), then heads(w) would not
perform step(x, (v, w)). That is, w would enter the cover
before heads(w) would consider (v, w) (in Fig. 1, see the
cost-10 node).

For such an edge (v, w), on consideration, heads(w) will
bring w into the cover whether or not v chooses (v, w) for its
star edge. So, edge (v, w) will be covered in this round, re-
gardless of v’s choice of star edge, as long as w does heads(w).
Since w does heads(w) with probability 1/2, edge (v, w) will
be covered with probability 1/2.

Since this is true for a constant fraction of v’s active edges,
in expectation, a constant fraction of v’s active edges will be
covered during the round.
Case 2: A constant fraction of v’s active edges (v, w) have
the following property: if v were to choose (v, w) as its star
edge, and w were to do heads(w), then heads(w) would per-
form step(x, (v, w)).

For such an edge (v, w), heads(w) would bring v into the
cover as long as step(x, (v, w)) would not be the last step
performed by heads(w) (in Fig. 1, the cost-8 and cost-100
nodes). Or, if step(x, (v, w)) would be the last step per-
formed by heads(w), then tails(w) would do only step(x, (v, w)),
which would bring v into the cover (by the assumption that,
at the start of the round (v, w) is active so that step(x, (v, w))
would bring v into the cover) (in Fig. 1, the cost-9 node).
Thus, for such an edge (v, w), one of heads(w) or tails(w)
would bring v into the cover. Recall that w has a 50% chance
of doing heads(w) and a 50% chance of doing tails(w). Thus,
if v chooses such an edge, v enters the cover with at least a
50% chance.

In the case under consideration, v has a constant proba-
bility of choosing such an edge. Thus, with constant prob-
ability, v will enter the cover and all of v’s edges will be
deleted. Thus, in this case also, a constant fraction of v’s
edges are covered in expectation during the round.

Thus, in each round, in expectation a constant fraction of
the remaining edges are covered. By standard arguments,
this implies that the number of rounds is Od(logn), both
in expectation and with probability 1 − 1/nd, for any fixed
d > 0. This completes the proof of Thm. 1, part (a).

Parallel (RNC) implementation
Proof of Thm. 1, part (b). To obtain the parallel algorithm,
implement heads(w) as follows. For w’s kth star edge ek,
let βk be the β that step(x, ek) would use if given x at the
start of the round. If heads(w) eventually does step(x, ek)



for edge ek, the step will increase xw by βk/cw, unless ek

is the last edge heads(w) does a step for. Thus, the edges
for which heads(w) will do step(x, ek) are those for which

xw +
∑k−1

j=1 βj/cw < 1. These steps can be identified by a
prefix-sum computation, then all but the last can be done
in parallel. This gives an NC implementation of heads(w).
The RNC algorithm simulates the distributed algorithm for
Od(logn) rounds; if the simulated algorithm halts, the RNC
algorithm returns x, and otherwise it returns “fail”. This
completes the proof of Thm. 1.

3. MIXED INTEGER PROGRAMS
(TWO VARIABLES PER CONSTRAINT)

Next we generalize the results of Section 2 to CMIP2 (CMIP
with at most two non-zero coefficientsAij in each constraint).

Theorem 2. For covering mixed integer linear pro-
grams with at most two variables per constraint (CMIP2):

(a) there is a distributed 2-approximation algorithm running
in O(log |C|) rounds in expectation and with high probability,
where |C| is the number of constraints.

(b) there is a parallel 2-approximation algorithm in “Las Ve-
gas” RNC.

Centralized algorithm
First we describe an implementation of the centralized δ-
approximation algorithm for monotone covering [22] for
the special case of CMIP2.

Model the CMIP constraints (including the upper bounds
and integrality constraints) by allowing each xj to range
freely in IR+ but replacing each constraint Aix ≥ b by the
following equivalent monotone constraint Si:∑

j∈I

Aijbmin(xj , uj)c+
∑
j∈I

Aij min(xj , uj)≥ bi

where set I contains the indexes of the integer variables.
The algorithm starts with x = 0, then repeatedly does

step(x, S), defined below, for any unsatisfied constraint S:

subroutine step(x, S):
1. Let β ← stepsize(x, S).
2. For each j with Aij > 0, increase xj by β/cj.

Once all constraints are satisfied, the algorithm rounds each
xj down to bmin(xj , uj)c and returns the rounded x.

Definition of function stepsize(x, Si). Here stepsize(x, S)
can be smaller than the β in Alg. 1. Each step might not
satisfy its constraint.

For the algorithm to produce a 2-approximate solution, it
suffices for stepsize(x, S) to return a lower bound on the
minimum cost of augmenting x to satisfy S, that is, on
distancec(x, S) = min{c(x̂)− c(x)|x̂ ∈ S, x̂ ≥ x}:

Observation 1. ([22]) If stepsize(x, S) ≤ distancec(x, S)
in each step, and the algorithm above terminates, then it
returns a 2-approximate solution.

(Partial proof: Let x∗ be any optimal solution. A step
increases the cost c · x by 2β, but decreases the potential∑

v∈V cv max(0, x∗v − xv) by at least β. Details in [22].)

Compute stepsize(x, Si) as follows. Consider any relax-
ation of Si that can be obtained from Si by relaxing any sub-
set of the integrality constraints or variable upper bounds.

(That is, replace bmin(xj , uj)c by min(xj , uj) for any subset
of the j’s in I, and then replace min(xj , uj) by xj for any
subset of the j’s.) Since there are at most two variables per
constraint there are at most sixteen such relaxed constraints.

Define the potential Φ(x, Si) of constraint Si to be the
number of these relaxed constraints not satisfied by the cur-
rent x. Compute stepsize(x, Si) (in constant time) as the
minimum cost to increase just one variable enough to re-
duce Φ(x, Si).

Observation 2. With this stepsize(), step(x, Si) is done
at most sixteen times before constraint Si is satisfied.

Also, this step size satisfies the condition in Observation 1:

Lemma 1. stepsize(x, Si) ≤ distancec(x, Si)

Proof. Consider a particular relaxed constraint S′i ob-
tained by relaxing the upper bound constraints for all xj

with xj < uj and enforcing only a minimal subset J of the
floor constraints (while keeping the constraint unsatisfied).
This gives S′i, which is of the form∑

j∈J

Aijbxjc+
∑
j∈J′

Aijxj ≥ bi −
∑

j∈J′′

uj

for some J , J ′, and J ′′.
What is the cheapest way to increase x to satisfy S′i? In-

creasing any one term bxjc for j ∈ J is enough to satisfy S′i
(increasing the left-hand side by Aij , which by the minimal-
ity of J must be enough to satisfy the constraint).

Or, if no such term increases, then the sum
∑

j∈J′ Aijxj

must be increased by enough so that increase alone is enough
to satisfy the constraint. The cheapest way to do that is to
increase just one variable (xj for j ∈ J ′ maximizing Aij/cj).

In sum, for this S′i, distance(x, S′i) is the minimum cost to
increase just one variable so as to satisfy S′i. Thus, by its
definition, stepsize(x, Si) ≤ distance(x, S′i). It follows that
stepsize(x, Si) ≤ distance(x, S′i) ≤ distance(x, Si).

Example. Minimize x1 + x2 subject to 0.5x1 + 3x2 ≥ 5,
x2 ≤ 1, and x1, x2 ∈ ZZ+. Each variable has cost 1, so
each step will increase each variable equally. There are eight
relaxed constraints:

0.5x1 + 3x2 ≥ 5 (1)

0.5x1 + 3bx2c ≥ 5 (2)

0.5x1 + 3 min{x2, 1} ≥ 5 (3)

0.5x1 + 3bmin{x2, 1}c ≥ 5 (4)

0.5bx1c+ 3x2 ≥ 5 (5)

0.5bx1c+ 3bx2c ≥ 5 (6)

0.5bx1c+ min{x2, 1} ≥ 5 (7)

0.5bx1c+ 3bmin{x2, 1}c ≥ 5 (8)

At the begining, x1 = x2 = 0. No relaxed constraint is sat-
isfied, so Φ(x, S) = 8. Then stepsize(x, S) = 5/3 (constraint
(1) or (5) would be satisfied by raising x2 by 5/3). The first
step raises x1 and x2 to 5/3, reducing Φ(x, S) to 6.

For the second step, stepsize(x, S) = 1/3 (constraint (2)
or (6) would be satisfied by raising x2 by 1/3). The step
raises both variables by 1/3 to 2, lowering Φ(x, S) to 4.

For the third step, stepsize(x, S) = 2, (constraint (3), (4),
(7), or (8) would be satisfied by raising x1 by 2). The step
raises both variables by 2, to 4, decreasing Φ(x, S) to 0.



All constraints are now satisfied, and the algorithm re-
turns x1 = bx1c = 4 and x2 = bmin{x2, 1}c = 1.

Related stepsize() functions for general CMIP are in [22].

Distributed implementation
To prove part (a) of Thm. 2, we describe a distributed im-
plementation of the above centralized algorithm. The algo-
rithm (Alg. 2) generalizes Alg. 1.

We assume the network in which the distributed compu-
tation takes place has a node v for every variable xv, with
an edge (v, w) for each constraint S that depends on vari-
ables xv and xw. (The computation can easily be simulated
on, say, a network with vertices for constraints and edges for
variables, or a bipartite network with vertices for constraints
and variables.)

In Alg. 1, a constant fraction of the edges were likely to be
covered each round because a step done for one edge could
cover not just that edge, but many others also. Here we take
a similar approach. Recall the definition of Φ(x, S) in the
definition of stepsize(). We want the total potential of all
constraints, Φ(x) =

∑
S Φ(x, S), to decrease by a constant

fraction in each round.

Definition 1. Say that a constraint S is hit during the
round when its potential Φ(x, S) decreases as the result of
some step.

By the definition of stepsize(), for any x and any con-
straint S there is at least one variable xv such that raising
just xv to xv + stepsize(x, S)/cv would be enough to hit S.

Say such a variable xv can hit S (given the current x).

We want a constant fraction of the unmet constraints to be
hit in each round.

Note that the observation implies, for example, that, among
constraints S that can be hit by a given variable xv, doing
a single step for the constraint S maximizing stepsize(x, S)
will hit all such constraints. Likewise, doing a single step
for a random such constraint will hit in expectation at least
half of them (those with stepsize(x, S′) ≤ stepsize(x, S)).

In each round of the algorithm, each node randomly chooses
to be a leaf or a root. Each (two-variable) constraint is ac-
tive if one of its variables xv is a leaf and the other, say xw,
is a root, and the leaf xv can hit the constraint at the start
of the round. (Each unmet constraint is active with prob-
ability at least 1/4.) Each leaf v chooses one of its active
constraints at random to be a star constraint. Then each
root w does (randomly) either heads(w) or tails(w), where
heads(w) does steps for the star constraints rooted at w in
a particular order; and tails(w) does just one step for the
last star constraint that heads(w) would have done a step
for (called w’s “runt”).

As heads(w) does steps for the star constraints rooted at
w, xw increases. As xw increases, the status of a star con-
straint S rooted at w can change: it can be hit by the in-
crease in xw or it can cease to be hittable by xv (and in-
stead become hittable by xw). For each constraint S, define
threshold tS to be the minimum value of xw at which S’s
would have such a status change. Then heads(w) does steps
in order of decreasing tS until it reaches a constraint S with
xw ≥ tS . At that point, each of w’s not-yet-hit star con-
straints S has tS ≤ xw, and can still be hit by xw. (As xw

increases, once S changes status, S will be hittable by xw at

least until S is hit.) Then heads(w) does step(x, Sr) for the
“runt” constraint Sr — the one, among w’s not-yet-hit star
constraints, maximizing stepsize(x, Sr). This step hits all of
w’s not-yet-hit star constraints.

See Alg. 2 for details.

Analysis of the number of rounds

Lemma 2. The total potential
∑

Si
Φ(x, Si) decreases by

a constant factor in expectation with each round.

Proof. Any unmet constraint is active with probability
at least one fourth, so with constant probability the poten-
tial of the active edges is a constant fraction of the total
potential. Assume this happens. Consider an arbitrary leaf
v. It is enough to show that in expectation a constant frac-
tion of v’s active constraints are hit (have their potentials
decrease) during the round. To do so, condition on any set
of choices of star constraints by the other leaves, so the only
random choices left to be made are v’s star-constraint choice
and the coin flips of the roots. Then (at least) one of the
following three cases must hold:

Case 1. A constant fraction of v’s active constraints S
have the following property: if v were to choose S as its star
constraint, and the root w of S were to do heads(w), then
heads(w) would not do step(x, S).

Although heads(w) wouldn’t do step(x, S) for such an S, it
nonetheless would hit S: just before heads(w) does step(x, Sr),
then xw ≥ tS , so either S has already been hit (by the in-
creases in xw) or will be hit by step(x, Sr) (because xw can
hit S and, by the choice of Sr, step(x, Sr) increases xw by
stepsize(x, Sr)/cw ≥ stepsize(x, S)/cw).

On consideration, for a constraint S with the assumed
property, the steps done by heads(w) will be the same even
if v chooses some a constraint S′ with a root other than w
as its star constraint. (Or, if v chooses a constraint S′ 6= S
that shares root w with S, the steps done by heads(w) will
still raise xw by as much as they would have had v chosen
S for its star constraint.) Thus, for such a constraint S,
heads(w) (which w does with probability at least 1/2) will
hit S whether or not v chooses S as its star constraint.

If a constant fraction of v’s active constraints have the as-
sumed property, then a constant fraction of v’s active con-
straints will be hit with probability at least 1/2, so in ex-
pectation a constant fraction of v’s active constraints will be
hit.

Case 2. A constant fraction of v’s active constraints S
have the following property: if v were to choose S as its star
constraint, and the root w of S were to do heads(w), then
heads(w) would do step(x, S) when xw < tS (S would not be
the runt).

Let H denote the set of such constraints. For S ∈ H let
h(S) be the value to which heads(w) (where w is the root
of S) would increase xv. Whether or not v chooses S as its
star constraint, if xv increases to h(S) in the round and w
does heads(w), then S will be hit.

Let S and S′ be any two constraints in H where h(S) ≥
h(S′). Let w and w′, respectively, be the root vertices of
S and S′. (Note that w = w′ is possible.) If v chooses S′

as its star constraint and w and w′ both do heads(), then
S will be hit (because xv increases to at least h(S′) ≥ h(S)
and heads(w) still increases xw at least to the value it would
have had just before heads(w) would have done step(x, S),
if v had chosen S as its star constraint).
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1. At each node v ∈ V : initialize xv ← 0;
if there are unmet constraints S that depend only on xv, do step(x, S) for the one maximizing stepsize(x, S).

2. Until all vertices are finished, perform rounds as follows:

3. At each node v: if v’s constraints are all met, finish (round xv down to min(xv, uv), or bmin(xv, uv)c if v ∈ I);
Otherwise, choose to be a leaf or a root, each with probability 1/2.

4. At each leaf v: For each unmet constraint S that can be hit by xv (per Defn. 1), label S active if S’s other variable
is xw for a root w; choose, among these active constraints, a random one to be xv’s star constraint (rooted at w).

5. At each root node w: do either heads(w) or tails(w) below, each with probability 1/2.

heads(w)
1. For each star constraint S rooted at w, let tS be the minimum threshold such that increasing xw to tS

would either hit S (i.e., decrease Φ(x, S)) or make it so S’s leaf variable xv could no longer hit S (and xw could).
If there is no such value, then take tS =∞.

2. For each star constraint S rooted at w, in order of decreasing tS , do the following:
If xw < tS then do step(x, S) (hitting S); otherwise, stop the loop and do the following:

Among the star constraints rooted at w that have not yet been hit this round, let Sr (the “runt”)
be one maximizing stepsize(x, Sr). Do step(x, Sr) (hitting Sr and all not-yet-hit star constraints rooted at w).

tails(w)
1. Determine which constraint Sr would be the runt in heads(w). Do step(x, Sr).

Since (in the case under consideration) a constant fraction
of v’s active constraints are inH, with constant probability v
chooses some constraint S′ ∈ H as its star constraint and the
root w′ of S′ does heads(w′). Condition on this happening.
Then the chosen constraint S′ is uniformly random in H, so,
in expectation, a constant fraction of the constraints S in H
are hit (because h(S) ≤ h(S′) and the root w of S also does
heads(w)).

Case 3. A constant fraction of v’s active constraints S
have the following property: if v were to choose S as its star
constraint, and the root w of S were to do tails(w), then
tails(w) would do step(x, S) (S would be the runt).

Let T denote the set of such constraints. For S ∈ T let
t(S) be the value to which tails(w) (where w is the root of
S) would increase xv. Whether or not v chooses S as its
star constraint, if xv increases to t(S) in the round then S
will be hit (whether or not w does tails(w)).

Let S and S′ be any two constraints in T where t(S′) ≥
t(S). Let w and w′, respectively, be the root vertices of S
and S′. (Again w = w′ is possible.) If v chooses S′ as its star
constraint and w′ does tails(w′), then (because xv increases
to at least t(S′) ≥ t(S)) S will be hit.

Since (in the case under consideration) a constant fraction
of v’s active constraints are in T , with constant probability v
chooses some constraint S′ ∈ T as its star constraint and the
root w′ of S′ does tails(w′). Condition on this happening.
Then the chosen constraint S′ is uniformly random in T , so,
in expectation, a constant fraction of the constraints S in T
are hit (because t(S) ≤ t(S′)).

This proves the lemma.

The lemma implies that the potential decreases in expec-
tation by a constant factor each round. As the potential is
initially O(|C|) and non-increasing, standard arguments im-
ply that the number of rounds before the potential is less
than 1 (and so x must be feasible) is O(log |C|) in expecta-
tion and with high probability.

This completes the proof of Thm. 2, part (a).

Parallel (RNC) implementation
Proof of Thm. 2, part (b). To adapt the proof of (a) to
prove part (b), the only difficulty is implementing step (2)
of heads(w) in NC. This can be done using the following
observation. When heads(w) does step(x, Sk) for its kth star
constraint (except the runt), the effect on xw is the same
as setting xw ← fk(xw) for a linear function fk that can
be determined at the start of the round. By a prefix-sum-
like computation, compute, in NC, for all i’s, the functional
composition Fk = fk ◦ fk−1 ◦ · · · ◦ f1. Let x0

w be xw at the
start of the round. Simulate the steps for all constraints
Sk in parallel by computing xk

w = Fk(x0
w), then, for each

k with xk−1
w < tSk , set the variable xv of Sk’s leaf v by

simulating step(x, Sk) with xw = xk−1
w . Set xw to xk

w for
the largest k with xk−1

w < tSk . Finally, determine the runt
S and do step(x, S). This completes the description of the
NC simulation of heads(w).

The RNC algorithm will simulate some c log |C| rounds of
the distributed algorithm, where c is chosen so the probabil-
ity of termination is at least 1/2. If the distributed algorithm
terminates in that many rounds, the RNC algorithm will re-
turn the computed x. Otherwise the RNC algorithm will
return “fail”.

This concludes the proof of Thm. 2.

4. MONOTONE COVERING
Recall that the instance of monotone covering, defined by
a cost function c and constraint collection C, is

Find x ∈ IRn
+ minimizing c(x) subject to (∀S ∈ C) x ∈ S.

The cost function c : IRn
+ → IR+ must be non-decreasing,

continuous, and submodular. Each constraint set S ∈ C
must be monotone (closed upwards) and closed under limit.

Say that the cost function c(x) is locally computable if
the increase in c(x) due to raising xj can be determined
knowing only the values of the variables that S depends on.
Any linear or separable cost function is locally computable.



Theorem 3. For monotone covering with a locally com-
putable cost function there is a distributed δ-approximation
algorithm taking O(log2 |C|) communication rounds in expec-
tation and with high probability, where |C| is the number of
constraints.

Centralized algorithm
The centralized δ-approximation algorithm for monotone
covering is as follows [22]. The algorithm starts with x = 0,
then repeatedly does the following step(x, S) for any not-yet-
satisfied constraint S (below vars(S) denotes the variables in
x that constraint x ∈ S depends on):

subroutine step(x, S):

1. Let β ← stepsize(x, S).
2. For j ∈ vars(S), let x′j ∈ IR+ ∪ {∞} be maximal s.t.

raising xj to x′j would raise c(x) by at most β.
3. For j ∈ vars(S), let xj ← x′j.

Let distancec(x, S) denote the minimum cost of augmenting
x to satisfy S, min{c(x̂)− c(x) : x̂ ∈ S, x̂ ≥ x}.

Observation 3. ([22]) If stepsize(x, S) ≤ distancec(x, S)
in each step, and the algorithm terminates, then it returns
a δ-approximate solution.

(Partial proof: Each step starts with x 6∈ S. Since the op-
timal solution x∗ is in S and S is monotone, there must be
at least one k ∈ vars(S) such that xk < x∗k. Thus, while the
algorithm increases the cost of x by at most δβ, it decreases
the potential

∑
j cj max(0, x∗j −xj) by at least β. Details in

[22].)

The function stepsize(x, S). In what follows, we take
stepsize(x, S) to be the minimum β such that step(x, S) will
satisfy S in one step. As observed in [22], this choice satisfies
the requirement stepsize(x, S) ≤ distancec(x, S) in Observa-
tion 3.

If this stepsize(x, S) is not easy to compute, more com-
putationally tractable alternatives are sometimes possible.
For example, for CMIP, a method similar to the one in the
previous section for CMIP2 can be used.

Distributed implementation
We assume the distributed network has a node for each con-
straint S ∈ C, with edges from S to each node whose con-
straint S′ shares variables with S (vars(S) ∩ vars(S′) 6= ∅).
(The computation can easily be simulated on a network with
nodes for variables or nodes for variables and constraints.)
We assume unbounded message size.

Proof of Thm. 3. To start each phase, the algorithm
finds large independent subsets of constraints by running
one phase of Linial and Saks’ (LS) decomposition algorithm
[28]2, below, with any k such that k ∈ Θ(log |C|) (in case the
nodes don’t know such a value see the comment at the end
of this subsection). A phase of the LS algorithm, for a given
k, takes O(k) rounds and produces a random subset R ⊆ S
of the constraints (nodes), and for each constraint S ∈ R a
“leader” node `(S) ∈ S, with the following properties:

• Each constraint in R is within distance k of its leader:

(∀S ∈ R) d(S, `(S)) ≤ k.
2Decomposing the graph for packing and covering problems
has been also used by Kuhn et al. to compute distributively
an approximate solution for fractional covering [25]

• Edges don’t cross components:

(∀S, S′ ∈ R) `(S) 6= `(S′)→ vars(S) ∩ vars(S′) = ∅.

• Each constraint has a chance to be in R:

(∀S ∈ S) Pr[S ∈ R] ≥ 1/c|C|1/k for some c > 1.

Next, each constraint S ∈ R sends its information (the
constraint and its variables’ values) to its leader `(S). This
takes O(k) rounds because `(S) is at distance O(k) from
S. Each leader then constructs (locally) the subproblem in-
duced by the constraints that contacted it and the variables
of those constraints, with their current values. Using this
local copy, the leader repeatedly does step(x, S) for any not-
yet-met constraint S that contacted it, until all constraints
that contacted it are satisfied.

(By the assumption that the cost is locally computable,
the function stepsize(x, S) and the subroutine step(x, S) can
be implemented knowing only the constraint S and the val-
ues of the variables on which S depends. Thus, the leader
can perform step(x, S) for each constraint that contacted it
in this phase. Moreover, distinct leaders’ subproblems don’t
share variables, so they can proceed simultaneously.)

To end the phase, each leader ` returns the updated vari-
able information to the constraints that contacted `. Each
constraint in R is satisfied in the phase and drops out of the
computation (it can be removed from the network and from
C; its variables’ values will stabilize once the constraint and
all its neighbors are finished).

Analysis of the number of rounds. In each phase (since
each constraint is in R, and thus satisfied, with probability
1/c|C|1/k), the number of remaining constraints decreases

by at least a constant factor 1 − 1/c|C|1/k ≤ 1 − 1/Θ(c)
in expectation. Thus, the algorithm finishes in O(c log |C|)
phases in expectation and with high probability 1−1/|C|O(1).
Since each phase takes O(k) rounds, this proves the theorem.

Comment. If the nodes don’t know a value k ∈ Θ(log |C|),
use a standard doubling trick. Fix any constant d > 0.
Start with x = 0, then run the algorithm as described
above, except doubling values of k as follows. For each
k = 1, 2, 4, 8, . . ., run Od(k) phases as described above with
that k. (Make the number of phases enough so that, if
k ≥ ln |C|, the probability of satisfying all constraints is at
least 1−1/|C|d.) The total number of rounds is proportional
to the number of rounds in the last group of Od(k) phases.

To analyze this modification, consider the first k ≥ log |C|.
By construction, with probability at least 1−1/|C|d, all con-
straints are satisfied after the Od(k) phases with this k. So
the algorithm finishes in Od(log |C|) phases with probability
at least 1− 1/|C|d.

To analyze the expected number of rounds, note that
the probability of not finishing in each subsequent group
of phases is at most 1/|C|d, while the number of rounds in-
creases by a factor of four for each increase in k, so the
expected number of subsequent rounds is at most
Od(log |C|)

∑∞
i=0 4i/|C|di = Od(log |C|).

Applications
As mentioned in the introduction, monotone covering gen-
eralizes many covering problems. For all of these, Thm. 3
gives a distributed δ-approximation algorithm running in
O(log2 |C|) communication rounds in expectation and with
high probability.



Corollary 1. There is a distributed δ-approximation al-
gorithm for CMIP, probabilistic CMIP, facility loca-
tion and probabilistic facility location taking O(log2 |C|)
communication rounds in expectation and with high proba-
bility.

The corollary follows immediately from Thm. 3 and the
observation that the problems in question (see descriptions
below) are special cases on monotone covering.

If the complexity of the computation (as opposed to just
the number of communication rounds) is important, these
problems have appropriate stepsize() functions that can be
computed efficiently (generally so that each constraint can
be satisfied with overall work nearly linear in the problem
size) [22].

Here is a brief description of the problems mentioned above
but not previously defined.

(Non-metric) facility location, for a bipartite graph
G = (C,F,E) of customers C and facilities F , with assign-
ment costs d and opening costs f , asks to find x ≥ 0 such
that

∑
j∈N(i)bxijc ≥ 1 for each customer i, while minimizing

the opening cost
∑

j∈F fj maxi∈N(j) xij plus the assignment

cost
∑

ij∈E dijxij . The total cost is submodular. Each cus-

tomer has at most δ accessible facilities.3

In probabilistic CMIP, the constraints are CMIP con-
straints and each constraint has a probability pS of be-
ing active. The stage-one and stage-two costs are speci-
fied by a matrix w and a vector c, respectively. In stage
one, the problem instance is revealed. The algorithm com-
putes, for each constraint S ∈ C, a “commitment” vector
yS ∈ S for that constraint. The cost for stage one is w · y =∑

S,j∈vars(S) w
S
j y

S
j . In stage two, each constraint S is (in-

dependently) active with probability pS . Let A denote the
active constraints. The final solution x is the minimal vector
covering the active-constraint commitments, i.e. with xj =
max{yS

j : S ∈ A, j ∈ vars(S)}. The cost for stage two is the
random variable c ·x =

∑
j cjxj . The problem is to choose y

to minimize the total expected cost C(y) = w · y+EA[c ·x].
Probabilistic facility location is a special case of prob-

abilistic CMIP,where each customer i is also given a prob-
ability pi. In stage one, the algorithm computes x and is
charged the assignment cost for x. In stage two, each cus-
tomer i is active (i ∈ A) with probability pi, independently.
The algorithm is charged opening costs fj only for facilities
with active customers (cost

∑
j fj maxi∈A xij). The (sub-

modular) cost c(x) is the total expected charge.
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