
NODES: A NOVEL SYSTEM DESIGN FOR EMBEDDED SENSOR NETWORKS

S. Neema, A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, D. Gunopulos, V. Kalogeraki
University of California - Riverside

{sneema, amitra, anirban, najjar, zeinalipour, dg, vana}@cs.ucr.edu

ABSTRACT

Emerging technologies provide increasingly powerful, efficient,
compact and economically viable capabilities like single chip
solutions for wireless embedded sensor systems, and large
capacity flash memories. In this paper we present the RISE
(RIverside SEnsor) platform, a novel system design for
embedded sensors built around a System-on-Chip device
interfaced with a large external storage memory in the form of
off-the-shelf SD (Secure Digital) Card. RISE supports a new
paradigm of “sense and store” as opposed to the prevalent “sense
and send” for sensor networks.

We describe the hardware and software structure of RISE
which supports the standard TinyOS and NesC environment. We
demonstrate that significant energy savings together with the
additional benefits of reduced complexity and increased ease of
use are achieved by adopting the sense and store methodology in
which we transmit only the data of interest. It has been
determined that percentage energy savings per node for storing
data as against transmitting over a single hop can be expressed
as (92.2 – 105.9x), where x is the fraction of useful data that
needs to be transmitted. Also investigated, is a number of
applications that benefit from the extra degree of freedom
afforded by a large storage media.

1. INTRODUCTION

The design of wireless sensor systems owe their origins to the
dictates of harsh resource constraints in size, cost, energy and
memory. To this date sensors consist of assembled discrete
components and small amounts of memory [8]. However, it has
become apparent that an increasing number of applications
require a wide spectrum of capabilities on a platform and require
more resources than others [12]. Some applications may even
require nodes in the same network to perform different
functions. Trends in memory prices and size indicate that storage
memory will continue to get cheaper and denser, and will thus
cease to be a critical economic constraint. Flash memory allows
for a very low energy storage budget. Also, higher levels of
device integration at low cost and size now provide us with
powerful, compact and economic single chip solutions for our
sensory and communication needs. The RISE (RIverside
SEnsor) platform leverages these trends essentially by
employing the ChipconTM CC1010 device. The CC1010 is a true
single-chip RF microprocessor / transceiver with an integrated
high performance 8051 microcontroller that benefits from a very
wide array of publicly available software including compilers
and debuggers.

Our contributions include porting of the most prevalent
design environment, the TinyOS (version1.1) and NesC (version
1.2alpha1), facilitating easier and modular programming,
interfacing of an SD-Card, and a carbon dioxide sensor and
developing the reactive methodology of query based response on
large datasets stored locally on the nodes. We are currently
developing a simple file system to support efficient access to the
memory. The open source SDCC (small device C compiler) is
used to generate the 8051 compatible C code. The platform
lowers communication costs significantly by reducing the
overall traffic to include only the subset of the data that is of
interest to an application querying the node. We calculated that
the energy cost of writing to flash memory is less than 10% of
the RF transmission cost. As an example, if the relevant data is
only a half of the data sensed, power consumption is reduced by
more than 35%. Other benefits include sensory interleaving
between multiple sensor nodes, on-chip indexing and reduced
complexity of the design. The RISE platform will be initially
deployed to measure carbon-dioxide levels in soil and monitor
bird populations by sensing and processing ambient sound.

The rest of the paper is organized as follows: Section 2
describes the motivation and requirements of the RISE platform.
The RISE platform, its components and the design decisions are
described in Section 3. Section 4 details the sense and store
paradigm. In Section 5 we evaluate the energy gains accrued by
adopting this methodology. Section 6 discusses the benefits to
applications from this methodology. We conclude with a survey
of related work (Section 7) and a discussion of NODES and
future directions (Section 8).

 2. MOTIVATION

Our work is motivated by the requirements of the Bio-
Complexity and the James Reserve projects at the Center of
Conservation Biology (CCB) at UC Riverside [3]. CCB is
working towards the conservation and restoration of species and
ecosystems by collecting and evaluating scientific information.
The bio-complexity project is designed to develop the kinds of
instruments that can monitor the soil environment directly in
environments where factors like high humidity and precipitation
will be challenge for the sensors, rather than in laboratory
recreations. One of the goals is to improve understandings of the
spatial and temporal processes that control soil carbon
sequestration in a tropical seasonal forest and the role of soil
microorganisms. The objectives in particular are to study soil
carbon in a fire chronosequence to evaluate an ecological
restoration experiment in terms of carbon and to integrate
spatially and temporally the information from the sensor arrays
with ecosystem scale measurements (e.g. root biomass, litter,
soil carbon).

SPOTS Track, Information Processing in Sensor Networks, 2005, Los Angeles, CA

Fig1. RISE Platform, Inset (Vaisala CARBOCAP GMT)

3. THE RISE SENSOR PLATFORM

The RISE node shown in Figure 1 is based on a modular design
using widely available commercial off-the-shelf technology.
RISE was designed from the ground up, to serve applications
demanding more flexibility, and performance rather than power
thriftiness, more so ever our target sensor zone exists in
California where sunlight is of abundance hence our decision to
use solar panels supplemented by fairly capacious power sources
including Pb batteries. Environmental data sensors on the RISE
platform include a temperature sensor LM61 from National
Semiconductors and a CO2 sensor (CARBOCAP GMT 220)
from Vaisala.

Figure 2 shows the block diagram of the RISE sensor
platform, hashed boundaries indicate the components that are
currently under development. Table 1 lists the salient features of
the RISE sensor platform.

We now discuss the individual components that make up
the RISE platform in more detail.

3.1. The Chipcon CC1010 SoC

Measuring a midget 12 mm along side widths and just 1.2 mm
high, the CC1010 is a feature packed SoC, supporting SPI and
baseband decoding in hardware while also maintaining
interoperability with existing platforms including the MICA.

The CC1010 is a true single-chip UHF transceiver with an
integrated high performance 8051 microcontroller with 32 KB of
Flash program memory. The CC1010 together with a few
external passive components constitutes a powerful embedded
system with wireless communication capabilities. The features
of the Chipcon SoC [4] are as follows:
• High-Performance and low-power optimized 8051-core

microcontroller that typically gives 2.5x the performance
of a standard 8051. Idle and sleep modes for reduced
power consumption. The system can wake up on
interrupt or when ADC input exceeds a set threshold.

• A low current consumption fully integrated UHF RF
Transceiver with programmable frequency and output
power and low current consumption. It also has fast PLL
setting for frequency hopping protocols, Manchester
encoding and decoding in hardware and also RSSI output

Fig2. The RISE platform block diagram.

which can be sampled by the on chip ADC.

• 32 KB of nonvolatile Flash memory with programmable
read and write locks for software security 2KB + 128
Byte of internal SRAM.

• Peripheral features include three channel, 10 bit ADC,
programmable watchdog timer, real time clock with 32
KHz crystal oscillator, two programmable serial UARTs,
master SPI interface, two counters and pulse width
modulators, 26 configurable general-purpose I/O-pins
and random bit generator and H/W DES encryption.

3.2. TinyOS on RISE

TinyOS [8] provides an event based execution and a constrained
runtime environment ideally suited to, and the present de-facto
standard operating system for sensor network systems. The
modular design of TinyOS is amenable to simple applications
not requiring complex hardware resources.

The latest stable versions of TinyOS, tinyos-1.1, as also the
NesC compiler, nesc v1.2alpha1, were ported on to the RISE
platform. The starting point of the port was the Wisenet project
[1], which had ported the older versions of the TinyOS and
NesC. The newer versions of TinyOS and NesC now include
support for clock synchronization, which is essential in indexing
and storing the data on the flash.

Additionally, instead of using the KeilµVision IDE to
manually generate the hex form to burn onto the chip, we
decided to use the SDCC (small device C compiler), freely
available in the public domain and integrated it such that the
single make of the application creates a hex file ready to be
burned on the on-chip flash. Fig 3 shows the flow diagram of the
build process of an application for the RISE platform; boxes
with hashed boundaries are the additional or modified
components.

The C language file was produced by nesc1.exe. The script
nesc-compile was modified to pass source code to the custom
post-processor for RISE, sdccppp. This script extracts the 8051
specific parameters that were passed through the nesc compiler

SPOTS Track, Information Processing in Sensor Networks, 2005, Los Angeles, CA

Component Capability

The MCU

Processor 24 MHz 8051 core

On-chip flash 32 KB

Current Consumptions
(Active, Idle, Power Down) at
14.7456 MHz

14.8 mA, 8.2 mA, 0.2 µA

The Radio

On-chip Radio 300-1000MHz low
power RF transceiver

RF transmission rate 76.8 kbits/s

Range Upto 250m at 868/915 MHz

Current Consumptions for RF
transceiver (Receive,
Transmit at 10dBm)

11.9 mA, 26.6 mA

Typical SD-Card Specifications

Current Consumption (Write,
Read, Sleep)

80 mA, 60mA, 500µA

Access Time 200µsec (max)

Read or Write on 256-512
MB card

10MB/sec for both

The SPI bus

Datarate Programmable upto 3 MHz

The data block length 512 bytes

Table1. The RISE platform features

and invokes the sdcc compiler and the packihx tools with the
relevant flags to generate the hex file that can then be stored on
the flash program memory.

3.3. Interfacing the SD-Card

SD-Cards are commercial non-volatile flash memory storage
devices about the size of a postage stamp (24mm by 32mm by
2.1mm). Their slim, compact design makes them an ideal
removable storage solution for a wide range of devices like
digital cameras, PDAs, and cellular phones These cards have
built-in memory controllers and consume a low power while
reading or writing and a miniscule amount when idle. Various
other standards for flash memory exist, such as the Compact
Flash (CF), XD Card, etc. CF cards communicate using a
parallel bus, unsuitable for simple microcontrollers, while the
XD-Card is devoid of a memory controller. SD-Cards on the
other hand support the popular SPI (Serial Peripheral Interface)
bus interface, which it inherited from the earlier generation
Multimedia Cards. SPI is a serial data interface for a
microcontroller which enables connecting peripheral devices
with low programming effort. Additionally the very low cost of
SD-Cards, approximately 6-10 cents per megabyte, make them a
truly low cost solution.

Our choice of the SD-interface results in a simple board
design and avoids soldering additional flash memory chips on
the board. The connection from the platform to the SD-Card
involves dedicating four I/O pins (Clock, Data In, Data Out,
Chip Select) from the microcontroller to the SD-Card and three
other power pins. Since all RISE platforms incorporate this
memory interface, addition of auxiliary memory is as simple as
inserting a SD-Card into the socket.

Fig3. The TinyOS flow diagram for a typical build

The microcontroller transfers data using the SPI protocol by

linking to a wrapper component that provides read / write
macros to facilitate data transfer to and from the SD-Card. The
wrapper component in turn uses the on-chip SPI interface, to
communicate with the SD-Card. Each write transaction to the
card involves writing a 512 byte block of data, while reads may
be arbitrarily sized up to a maximum of 512 bytes, at a
maximum rate of 3Mbps. Because a small amount of sensor data
would be generated per wake cycle, it would not possibly fill up
the 512 byte block, and writing it thus would entail zero
padding, and wastage of energy. Write efficiency is enhanced by
first buffering the sensor data to the on-chip flash. A full buffer
initiates a data flush from the on-chip flash to the SD-Card.
Currently we allocate 10 KB of the on-chip flash memory for
buffering while the rest is used for user data and program. We
are currently working on developing tiny access method
structures which allows for efficient sorted and random access to
local data.

4. THE PARADIGM OF SENSE AND STORE.

4.1 Rationale behind Sense and Store

Typically the sensor network applications generate vast amounts
of temporal data over very long time intervals that need to be
collected and processed in a power efficient manner. Of the vast
amounts of data generated, applications are typically interested
in only aggregates, hence database approaches have been
advocated [9]. We discuss how employing large memories on
the sensor nodes can fulfill the requirements of these
applications, in an overall methodology we call “sense and
store”.

During normal conditions, the sensory data remains
predictable with gradual changes, and hence is not of particular
importance. But often the question that we are interested in
answering is of the form “When did we have the last 5 highest
temperature readings?” or “What was the average temperature
last week?”, or consider our present scenario wherein sensors

SPOTS Track, Information Processing in Sensor Networks, 2005, Los Angeles, CA

are deployed in a forest to track climate conditions, and there is
a forest fire. In this case the data set of interest is the one, say up
to a month leading to the event. Hence, in most cases the queries
request only a part of the sensed data, sorted by either the index
(the timestamp in our case) or the value and the data of interest
in just a fraction of the sensed data. Typically these sets involve
temporal and top-k class of queries.

We aim to exploit this nature of sensory data in our
methodology of sense and store and show that it is much more
efficient to sense and store data on a large flash memory and
transmit it only when requested. Thus instead of wasting large
amounts of energy transmitting unnecessary data, we employ a
large memory to store all of the data and do small local
processing like update of current minimum, maximum or
average values and bookkeeping of various sorted lists and
indexes. It has been noted that communication costs a great lot
when compared to local processing, as also the reduction in
traffic simplifies network design significantly, thus permitting
scalability to a large number of nodes. As we see in Section 6,
the energy required for the transmitting one byte is roughly
equivalent to executing 688 CPU instructions, and the cost of
writing to the flash is less than 10% of the energy required to
transmit the same amount of data, making local storage and
processing highly desirable.

Efficient evaluation of top-k queries in our platform can be
achieved by estimating some threshold below which tuples do
not need to be processed or transmitted from the sensor nodes.
The key idea is to transmit only the necessary information
towards the querying node and to perform calculation in the
network rather than in a centralized way. In this scheme, each
sensor node maintains locally in the flash memory a window of
m measurements. This window evolves with time, and therefore,
once the limit of the available memory is reached, current
aggregates should be transmitted to the sink, otherwise at each
new time moment the oldest measurement is deleted. We note
however that given the capacities of SD-Cards m can be very
large. Registered queries can perform some local aggregation, if
the correctness of the query outcome is not violated, before
values are propagated towards the parent.

4.2 Providing Local Access Methods

Efficiently evaluating the queries described above requires
efficient access to the data that is stored on the "external" flash
memory. Therefore we plan to deploy certain access methods
(indexes) directly at the sensor nodes. These access methods will
serve as primitive operations for the efficient execution of a
wide spectrum of queries. Since the flash card on each node vi
can only hold m pages (oi0…oim) the available memory is
organized as a circular array, in which the newest oij pair always
replaces the oldest oij pair. Note that this sorted page
organization allows each sensor to have random or sorted access
by timestamp in O(1), without the requirement of any index.

Next we address how indexes become useful, when we
need to have access by value as well as the challenges that need
to be solved.
i) Random Access By Value: An example of such operation is to
locally load the records that have a temperature of, say, 70F. In
order to fetch records by their value we will use a static hash
index.

ii) Sorted Access By Value: An example of such operation is to
locally load the records that have a temperature between 50F-
70F. In order to fetch records by their value we will use a simple
B+ tree index. This index is a minimalistic version of its
counterpart found in a real database system. It consists of a small
number of non-leaf index pages which provide pointers to the
leaf pages.

Depending on the sample rate of a query, we expect to have
a number of insertion and deletion that need to be handled
efficiently. For this purpose we plan to keep a buffer for a small
set of leaf pages(each page is 512 bytes) in the MCU flash
memory (which is 32KB).

4.3 Efficient Top-k Query Evaluation in RISE

We now sketch an algorithm to compute top-k queries which is
designed to take full advantage of the capabilities of the sense
and store paradigm. This algorithm, the Threshold Join
Algorithm, decreases the number of values transmitted from each
sensor, by using an additional probing and filtering phase.

More specifically, the algorithm consists of three phases:
1) the Lower Bound phase, in which the sink collects the union
of the top-k results from all nodes in the network (denoted as
Lsink={l1,l2,…,lo}, o ≥ k),
2) the Hierarchical Joining phase, in which each node uses Lsink
for eliminating anything that has a value below the least ranked
item in Lsink,
3) the Clean-Up phase, in which the actual top-k results are
identified.

The use of local structures that index the data stored in each
sensor significantly improve the execution of this algorithm, and
can have a fundamental impact of the efficiency of the execution
of other complex queries.

To validate the efficiency and applicability of our approach
of evaluating top-k queries in our Sense and Store sensor
framework, we have tested our algorithm in a Peer-to-Peer
network collected at 32 sites in Washington and Oregon [2].
Each peer (node) maintained the average temperature on an
hourly basis for 208 days between June 2003 and June 2004 (i.e.
4990 moments), and our query was to find the 10 moments at
which the average temperature was the highest. We compared
our approach with the Sense and Send (SS) approach (sending
all data over the network), and our preliminary results indicate
that the SS approach consumes an order of magnitude more
network bytes than our Sense and Store approach when our top-
k algorithm is applied. We also performed a comparison with a
technique that transmits all data from the sensors but employs
in-network aggregation in a hierarchical fashion to compute the
average temperature of different time instances as the data are
transmitted in the network. Our preliminary results show that our
approach outperforms this technique by a factor of 5, in terms of
network bytes consumed.

5. ENERGY EVALUATION

 We calculate the energy gains that can be achieved by use of the
sense and store methodology and contrast and compare storing a
bit of data to sending it over the network. For a single hop,
energy consumed by the radio to transmit a single bit is 0.094
nAh, and to receive is 0.042 nAh. On the other hand energy

SPOTS Track, Information Processing in Sensor Networks, 2005, Los Angeles, CA

required to write to the SD-Card memory is 0.007 nAh and to
read is a mere 0.006 nAh.

Note that although the SD-Card current consumption is
more than that of the radio (best case), the considerably higher
data transfer rate (3 Mb/s as compared to 76.8 Kb/s) implies that
the read or write operation on the flash occurs for a much shorter
time and hence the energy expense for flash operations is less
than 10% of the radio operations. If the fraction of data that
turns out to be useful is denoted by x, and needs to be
transmitted over the radio, then total energy needed to write all
the data to the flash and read and transmit the relevant data can
be expressed as

E=0.007 + x(0.094+ 0.006) nAh/bit

Hence % energy savings can be expressed as

S%= 92.14 – 105.89x

As an example assume that the fraction of the useful data is
50% of the data sensed. In that case energy savings is of the
order of 39%. The break even point is when the data requested is
around 87% of the total sensed data. Any application that uses
less than 87% sensed data could immediately start saving energy
if it starts to save the data on the flash card.

Also, at a speed of 14.756 MHz and with an instruction of 4
clock cycles, the processor is able to execute 688 instructions in
the same amount of energy required to transfer a byte.

The savings become even more pronounced when we
consider the effect on the overall network. In the sense and send
approach each node not only sends unnecessary packets but also
acts as relays for other messages which have to be carried hop
by hop to the sink, this phenomenon effectively floods the
network with unnecessary packets. Less traffic would imply less
contention and interference which in turn translates into
additional energy savings and improved lifetime of the network.

6. IMPLICATIONS

Distributed, wireless, microsensor networks will enable myriad
applications for sensing the physical world. Considering past
efforts at experiments similar to the one discussed in Section 2,
we adjudge that using the sense and store methodology will be
very helpful in most of the data acquisition applications in the
sensor domain.

One of the first successful experiments involving
environmental and habitat monitoring using sensor nodes was
conducted by University of California, Berkeley at the Great
Duck Island, Maine [11]. Various sensor motes fitted with light,
temperature, barometric and acoustic sensors were utilized for
the task. The sense and send paradigm although largely
successful, resulted in a lifetime of almost seven months for the
experiment.

Our sense and store paradigm can be implemented in such
situations to advantage, and to increase the longevity of similar
experiments by virtue of saving power and cutting down on
communication costs, as most sensor data in such specific
experiments is a slowly varying, redundant time series[11] [13].
Moreover if the type of queries are similar to the k-maximum /
minimum, average, etc such queries could be most effectively
handled by sense and store as the nodes may continuously
calculate and store these values in their local memories.

Exemplifying the data received at a typical daylight sensor,
that for most parts of the day, data across the light sensor
increases gradually until midday and starts decreasing slowly
thereafter, and remains zero at night [13]. Hence this data may
be tightly compressed and stored during the day, while also
calculating certain statistically important values such as
maximum, minimum, average, etc, that would be transmitted to
the base station at night, effectively reducing communication
traffic during the day. Similar variations can be expected for
various other geo-climatic variations such as the temperature and
pressure at a location. Similarly, the measurement of event
longevity, such as infrared monitoring of animal dwellings [11]
[13] involves long intervals of near constant data, followed by
the end of the event, and is largely a binary phenomenon, i.e.
either the event persists or has lapsed. Sense and send may not
be justifiable, due to the requirement of communicating the data
throughout the lifetime of the event, and there seldom lies any
information for the duration of the event. On the other hand
sense and store can locally store and process the complete details
of the event while communicating only relevant details for its
reconstruction (such as start, stop time).

Data fidelity and power consumption are two opposing
criteria for sensor systems and most energy constrained sensor
networks tend to balance between data transmission and storage.
Many data such as photographic, acoustic, etc need to be
downsampled before being transmitted over the wireless
channel, thus sacrificing the quality of the sensed data, possibly
hindering future data mining. Local storage at the sensors thus
helps to preserve the original data, which can then be manually
retrieved and correlated at the end of the experiment.

Another problem afflicting sensor networks is the inability
of modeling the actual behavior and lifetime of the nodes in the
field, particularly due to lack of original operational data / post
mortem data [13]. Due to the availability of large local storage,
strategic vital statistics and diagnostic data vis-à-vis the motes
may be stored for post mortem analysis thus aiding our
understanding of actual deployment.

Tiered sensor networks have been proposed for various
environmental monitoring deployments such as the habitat
sensing array for biocomplexity mapping, as proposed for James
Reserve [6]. The platforms in the tiered network constituting the
highest level of the hierarchy are relatively high performance
computing devices communicating with the next in hierarchy,
the tags (sensor nodes similar in capabilities to RISE). Sense and
store enable the tags to locally store and manage data, as
broadcasted from minute memory-less sensors (devoid of any
receive circuitry), which just sense and send, owing to their
utterly simplistic and constrained designs.

Overall the benefits of sense and store are perceptible in
sensor networks deployed for monitoring time series data with
predictable queries and where post mortem analysis and
collection of data would be undertaken.

Keeping these requirements in mind, we are currently
calculating and storing the running average, daily min-max,
daily average, in the on-chip flash, which are then stored into the
SD-Card past elapse of twenty-four hours (RISE incorporates
timekeeping, thanks to the realtime clock on the platform[4]).
Currently under implementation are the top-k and range queries
which would be completed after due field runs to determine a
practicable value of the query window, along with generating
diagnostics information (battery voltage) from the ADC.

SPOTS Track, Information Processing in Sensor Networks, 2005, Los Angeles, CA

7. RELATED WORK

In the development of distributed sensor networks a large variety
of prototype systems have been implemented and tested. The
systems are spread all over the cost, power, functionality and
form factor space. Table 2 contrasts the RISE platform to some
of the low cost, low power contemporary sensor platforms. In
[7] a survey of current platforms and a classification according
to hierarchies is presented. In the low cost, low power generic
sensor spectrum we notice the absence of a platform which
boasts a large memory. Some other platforms in the high end,
high bandwidth category feature high end processors and
expandable memories, some including support for flash.
However these high end platforms are more of a tradeoff
between the requirements of the traditional low power embedded
sensors, which can be deployed in large numbers, and the
substantial requirements of high end applications and
networking, as also the convenience, usability of a desktop
development environment.

Systems which propose a declarative approach for querying
sensor networks include TinyDB [10] and Cougar [15]. These
systems achieve energy reduction by pushing aggregation and
selections in the network rather than processing everything at the
sink. Both approaches are optimized for sensor nodes with
limited storage and relatively short-epochs, while our techniques
are designated for sensors with larger memories and longer
epochs. In Data Centric Storage (DCS) [14] data with the same
name (e.g. humidity measurements) are stored at the same node
in the network, offering therefore efficient location and retrieval.
However the overhead of relocating the data in the network can
become expensive if the network generates GBs of data.

8. CONCLUSION AND FUTURE WORK

In this paper, we present RISE, a networked sensor system
featuring a large storage memory, thus paving the way for a new
paradigm in power conservation for applications that collect data
over long periods of time viz. environmental and habitat
monitoring. Since adequate memory and power conservation is
often a significant design criterion for developing a sensor
platform, we believe that adoption of sense and store along with
efficient query mechanisms provide significant energy benefits
to a wide spectrum of applications that can use the large memory
for local storage, aggregation and compression before
transmitting the results towards the sink. Moreover, the stored
diagnostics data, retrieved from sensors would help us
accurately determine causes of failure and aid development of
better and efficient sensing platforms. Presently these options
are available only in the sensor systems belonging to the class of
power hungry and complex platforms. In addition we expect that
with the provision of efficient access methods, our new
framework would enable wireless sensor systems to cope with
highly demanding new generation applications that have not yet
been addressed adequately. In future we plan to investigate the
effectiveness and limitations of our framework on a wide
spectrum of sensor platforms.

Platform MCU MCU,
Active
Current

On
Chip
RAM

On
Chip
Flash

Aux.
Mem.

RISE 24 MHz
8051 core

14.8 mA 2KB 32KB Upto 1
GB

RENE 4 MHz
AT90s8535

6.4 mA 512B 8KB -

MICA
MICA
2DOT

16 MHz
ATMega
128L

8 mA 4KB 128KB 512K
B

Telos 8 MHz TI
MSP430

0.56 mA 2KB 60KB 512K
B

EcoNode 16 MHz
8051 core
NRF24E1

3 mA 4K 32KB
EEPR
OM

-

iBadge 4 MHz
ATmega
103L

5.5 mA 4K 128K Option
-al
64 KB

Table2. Contemporary generic sensor platforms

9. REFERENCES

[1] http://cegt201.bradley.edu/projects/proj2003/wisenet/
[2] http://www-k12.atmos.washington.edu/k12/grayskies/
[3] http://www.ccb.ucr.edu/
[4] http://www.chipcon.com/
[5] J. R. Agre, L. P. Clare, G. J. Pottie, and N. Romanov, “Development
Platform for Self-Organizing Wireless Sensor Networks,” Proceedings of
SPIE’s 13th AeroSense, Unattended Ground Sensor Technologies and
Applications Conference, April 1999.
[6] A. Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, and J. Zhao,
“Habitat monitoring: Application driver for wireless communications
technology”, ACM SIGCOMM Workshop on Data Communications in
Latin America and the Caribbean, 2001.
[7] J. Hill, M. Horton, R. Kling and L. Krishnamurthy, "The platforms
enabling wireless sensor networks", Communications of the ACM,
47(6):41–46, 2004.
[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister, “System architecture directions for networked sensors”, In
Proceedings of ASPLOS, pages 93–104, Boston, MA, USA, Nov. 2000.
[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, ”TAG: A
Tiny AGgregation service for ad-hoc sensor networks”, Fifth Symposium
on OSDI ’02, Boston, Dec. 2002.
[10] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “The
design of an acquisitional query processor for sensor networks”, ACM
SIGMOD, 2003, San Diego, CA, 2003.
[11] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless
sensor networks for habitat monitoring”, ACM Workshop on Sensor
Networks and Applications, 2002.
[12] R. Pinilla, N. Navarro, and M. Gil, “TinyOS: A Case of Study for
Adaptable Embedded Applications Based on Sensor Networks”,
Technical Report UPC-DAC-2004-6, Technical University of Catalonia,
February 2004.
[13] J. R. Polastre , “Design and Implementation of Wireless Sensor
Networks for Habitat Monitoring”, MS thesis, 2003 available at:
 http://www.cs.berkeley.edu/~polastre/papers/masters.pdf
[14] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin, "Data-
centric storage in sensornets", ACM SIGCOMM Computer
Communication Review, vol 33-1, 2003.
[15] Y. Yao, J. E. Gehrke, "Query Processing in Sensor Networks",
CIDR'03, Asilomar, CA, 2003.

SPOTS Track, Information Processing in Sensor Networks, 2005, Los Angeles, CA

