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ABSTRACT 
 
Emerging technologies provide increasingly powerful, efficient, 
compact and economically viable capabilities like single chip 
solutions for wireless embedded sensor systems, and large 
capacity flash memories. In this paper we present the RISE 
(RIverside SEnsor) platform, a novel system design for 
embedded sensors built around a System-on-Chip device 
interfaced with a large external storage memory in the form of 
off-the-shelf SD (Secure Digital) Card. RISE supports a new 
paradigm of “sense and store” as opposed to the prevalent “sense 
and send” for sensor networks.  

We describe the hardware and software structure of RISE 
which supports the standard TinyOS and NesC environment. We 
demonstrate that significant energy savings together with the 
additional benefits of reduced complexity and increased ease of 
use are achieved by adopting the sense and store methodology in 
which we transmit only the data of interest. It has been 
determined that percentage energy savings per node for storing 
data as against transmitting over a single hop can be expressed 
as (92.2 – 105.9x), where x is the fraction of useful data that 
needs to be transmitted. Also investigated, is a number of 
applications that benefit from the extra degree of freedom 
afforded by a large storage media.  

 
1. INTRODUCTION 

 
The design of wireless sensor systems owe their origins to the 
dictates of harsh resource constraints in size, cost, energy and 
memory. To this date sensors consist of assembled discrete 
components and small amounts of memory [8]. However, it has 
become apparent that an increasing number of applications 
require a wide spectrum of capabilities on a platform and require 
more resources than others [12]. Some applications may even 
require nodes in the same network to perform different 
functions. Trends in memory prices and size indicate that storage 
memory will continue to get cheaper and denser, and will thus 
cease to be a critical economic constraint. Flash memory allows 
for a very low energy storage budget. Also, higher levels of 
device integration at low cost and size now provide us with 
powerful, compact and economic single chip solutions for our 
sensory and communication needs. The RISE (RIverside 
SEnsor) platform leverages these trends essentially by 
employing the ChipconTM CC1010 device. The CC1010 is a true 
single-chip RF microprocessor / transceiver with an integrated 
high performance 8051 microcontroller that benefits from a very 
wide array of publicly available software including compilers 
and debuggers. 

Our contributions include porting of the most prevalent 
design environment, the TinyOS (version1.1) and NesC (version 
1.2alpha1), facilitating easier and modular programming, 
interfacing of an SD-Card, and a carbon dioxide sensor and 
developing the reactive methodology of query based response on 
large datasets stored locally on the nodes. We are currently 
developing a simple file system to support efficient access to the 
memory. The open source SDCC (small device C compiler) is 
used to generate the 8051 compatible C code. The platform 
lowers communication costs significantly by reducing the 
overall traffic to include only the subset of the data that is of 
interest to an application querying the node. We calculated that 
the energy cost of writing to flash memory is less than 10% of 
the RF transmission cost. As an example, if the relevant data is 
only a half of the data sensed, power consumption is reduced by 
more than 35%. Other benefits include sensory interleaving 
between multiple sensor nodes, on-chip indexing and reduced 
complexity of the design. The RISE platform will be initially 
deployed to measure carbon-dioxide levels in soil and monitor 
bird populations by sensing and processing ambient sound. 

The rest of the paper is organized as follows: Section 2 
describes the motivation and requirements of the RISE platform. 
The RISE platform, its components and the design decisions are 
described in Section 3. Section 4 details the sense and store 
paradigm. In Section 5 we evaluate the energy gains accrued by 
adopting this methodology. Section 6 discusses the benefits to 
applications from this methodology. We conclude with a survey 
of related work (Section 7) and a discussion of NODES and 
future directions (Section 8). 

 
 2. MOTIVATION 

 
Our work is motivated by the requirements of the Bio-
Complexity and the James Reserve projects at the Center of 
Conservation Biology (CCB) at UC Riverside [3]. CCB is 
working towards the conservation and restoration of species and 
ecosystems by collecting and evaluating scientific information. 
The bio-complexity project is designed to develop the kinds of 
instruments that can monitor the soil environment directly in 
environments where factors like high humidity and precipitation 
will be challenge for the sensors, rather than in laboratory 
recreations. One of the goals is to improve understandings of the 
spatial and temporal processes that control soil carbon 
sequestration in a tropical seasonal forest and the role of soil 
microorganisms. The objectives in particular are to study soil 
carbon in a fire chronosequence to evaluate an ecological 
restoration experiment in terms of carbon and to integrate 
spatially and temporally the information from the sensor arrays 
with ecosystem scale measurements (e.g. root biomass, litter, 
soil carbon). 
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Fig1. RISE Platform, Inset ( Vaisala CARBOCAP GMT ) 

 
 

3. THE RISE SENSOR PLATFORM 
 

The RISE node shown in Figure 1 is based on a modular design 
using widely available commercial off-the-shelf technology. 
RISE was designed from the ground up, to serve applications 
demanding more flexibility, and performance rather than power 
thriftiness, more so ever our target sensor zone exists in 
California where sunlight is of abundance hence our decision to 
use solar panels supplemented by fairly capacious power sources 
including Pb batteries. Environmental data sensors on the RISE 
platform include a temperature sensor LM61 from National 
Semiconductors and a CO2 sensor (CARBOCAP GMT 220) 
from Vaisala. 

Figure 2 shows the block diagram of the RISE sensor 
platform, hashed boundaries indicate the components that are 
currently under development. Table 1 lists the salient features of 
the RISE sensor platform.  

We now discuss the individual components that make up 
the RISE platform in more detail. 

 
3.1. The Chipcon CC1010 SoC 
 
Measuring a midget 12 mm along side widths and just 1.2 mm 
high, the CC1010 is a feature packed SoC, supporting SPI and 
baseband decoding in hardware while also maintaining 
interoperability with existing platforms including the MICA.  

The CC1010 is a true single-chip UHF transceiver with an 
integrated high performance 8051 microcontroller with 32 KB of 
Flash program memory. The CC1010 together with a few 
external passive components constitutes a powerful embedded 
system with wireless communication capabilities. The features 
of the Chipcon SoC [4] are as follows: 
• High-Performance and low-power optimized 8051-core 

microcontroller that typically gives 2.5x the performance 
of a standard 8051. Idle and sleep modes for reduced 
power consumption. The system can wake up on 
interrupt or when ADC input exceeds a set threshold. 

• A low current consumption fully integrated UHF RF 
Transceiver with programmable frequency and output 
power and low current consumption. It also has fast PLL 
setting for frequency hopping protocols, Manchester 
encoding and decoding in hardware and also RSSI output 

 
Fig2. The RISE platform block diagram. 

 
which can be sampled by the on chip ADC.  

• 32 KB of nonvolatile Flash memory with programmable 
read and write locks for software security 2KB + 128 
Byte of internal SRAM.  

• Peripheral features include three channel, 10 bit ADC, 
programmable watchdog timer, real time clock with 32 
KHz crystal oscillator, two programmable serial UARTs, 
master SPI interface, two counters and pulse width 
modulators, 26 configurable general-purpose I/O-pins 
and random bit generator and H/W DES encryption. 

 
3.2. TinyOS on RISE 
 
TinyOS [8] provides an event based execution and a constrained 
runtime environment ideally suited to, and the present de-facto 
standard operating system for sensor network systems. The 
modular design of TinyOS is amenable to simple applications 
not requiring complex hardware resources. 

The latest stable versions of TinyOS, tinyos-1.1, as also the 
NesC compiler, nesc v1.2alpha1, were ported on to the RISE 
platform. The starting point of the port was the Wisenet project 
[1], which had ported the older versions of the TinyOS and 
NesC. The newer versions of TinyOS and NesC now include 
support for clock synchronization, which is essential in indexing 
and storing the data on the flash. 

Additionally, instead of using the KeilµVision IDE to 
manually generate the hex form to burn onto the chip, we 
decided to use the SDCC (small device C compiler), freely 
available in the public domain and integrated it such that the 
single make of the application creates a hex file ready to be 
burned on the on-chip flash. Fig 3 shows the flow diagram of the 
build process of an application for the RISE platform; boxes 
with hashed boundaries are the additional or modified 
components. 

The C language file was produced by nesc1.exe. The script 
nesc-compile was modified to pass source code to the custom 
post-processor for RISE, sdccppp. This script extracts the 8051 
specific parameters that were passed through the nesc compiler 
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Component Capability 

The MCU 

Processor 24 MHz 8051 core 

On-chip flash 32 KB 

Current Consumptions 
(Active, Idle, Power Down) at 
14.7456 MHz 

14.8 mA, 8.2 mA, 0.2 µA 

The Radio 

On-chip Radio 300-1000MHz low  
power RF transceiver  

RF transmission rate 76.8 kbits/s 

Range Upto 250m at 868/915 MHz 

Current Consumptions for RF 
transceiver  (Receive, 
Transmit at 10dBm) 

11.9 mA, 26.6 mA 

Typical SD-Card Specifications 

Current Consumption (Write, 
Read, Sleep) 

80 mA, 60mA, 500µA 

Access Time 200µsec (max) 

Read or Write on 256-512 
MB card 

10MB/sec for both 

The SPI bus 

Datarate Programmable upto 3 MHz 

The data block length 512 bytes 

Table1. The RISE platform features 
 

and invokes the sdcc compiler and the packihx tools with the 
relevant flags to generate the hex file that can then be stored on 
the flash program memory. 
 
3.3. Interfacing the SD-Card 
 
SD-Cards are commercial non-volatile flash memory storage 
devices about the size of a postage stamp (24mm by 32mm by 
2.1mm). Their slim, compact design makes them an ideal 
removable storage solution for a wide range of devices like 
digital cameras, PDAs, and cellular phones These cards have 
built-in memory controllers and consume a low power while 
reading or writing and a miniscule amount when idle. Various 
other standards for flash memory exist, such as the Compact 
Flash (CF), XD Card, etc. CF cards communicate using a 
parallel bus, unsuitable for simple microcontrollers, while the 
XD-Card is devoid of a memory controller. SD-Cards on the 
other hand support the popular SPI (Serial Peripheral Interface) 
bus interface, which it inherited from the earlier generation 
Multimedia Cards. SPI is a serial data interface for a 
microcontroller which enables connecting peripheral devices 
with low programming effort. Additionally the very low cost of 
SD-Cards, approximately 6-10 cents per megabyte, make them a 
truly low cost solution.  

Our choice of the SD-interface results in a simple board 
design and avoids soldering additional flash memory chips on 
the board. The connection from the platform to the SD-Card 
involves dedicating four I/O pins (Clock, Data In, Data Out, 
Chip Select) from the microcontroller to the SD-Card and three 
other power pins. Since all RISE platforms incorporate this 
memory interface, addition of auxiliary memory is as simple as 
inserting a SD-Card into the socket. 

 
Fig3. The TinyOS flow diagram for a typical build 

 
The microcontroller transfers data using the SPI protocol by 

linking to a wrapper component that provides read / write 
macros to facilitate data transfer to and from the SD-Card. The 
wrapper component in turn uses the on-chip SPI interface, to 
communicate with the SD-Card. Each write transaction to the 
card involves writing a 512 byte block of data, while reads may 
be arbitrarily sized up to a maximum of 512 bytes, at a 
maximum rate of 3Mbps. Because a small amount of sensor data 
would be generated per wake cycle, it would not possibly fill up 
the 512 byte block, and writing it thus would entail zero 
padding, and wastage of energy. Write efficiency is enhanced by 
first buffering the sensor data to the on-chip flash. A full buffer 
initiates a data flush from the on-chip flash to the SD-Card. 
Currently we allocate 10 KB of the on-chip flash memory for 
buffering while the rest is used for user data and program. We 
are currently working on developing tiny access method 
structures which allows for efficient sorted and random access to 
local data. 
 

4. THE PARADIGM OF SENSE AND STORE. 
 

4.1 Rationale behind Sense and Store 
 
Typically the sensor network applications generate vast amounts 
of temporal data over very long time intervals that need to be 
collected and processed in a power efficient manner. Of the vast 
amounts of data generated, applications are typically interested 
in only aggregates, hence database approaches have been 
advocated [9]. We discuss how employing large memories on 
the sensor nodes can fulfill the requirements of these 
applications, in an overall methodology we call “sense and 
store”. 

During normal conditions, the sensory data remains 
predictable with gradual changes, and hence is not of particular 
importance. But often the question that we are interested in 
answering is of the form “When did we have the last 5 highest 
temperature readings?” or “What was the average temperature 
last week?”, or consider our present scenario wherein sensors 
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are deployed in a forest to track climate conditions, and there is 
a forest fire. In this case the data set of interest is the one, say up 
to a month leading to the event. Hence, in most cases the queries 
request only a part of the sensed data, sorted by either the index 
(the timestamp in our case) or the value and the data of interest 
in just a fraction of the sensed data. Typically these sets involve 
temporal and top-k class of queries. 

We aim to exploit this nature of sensory data in our 
methodology of sense and store and show that it is much more 
efficient to sense and store data on a large flash memory and 
transmit it only when requested. Thus instead of wasting large 
amounts of energy transmitting unnecessary data, we employ a 
large memory to store all of the data and do small local 
processing like update of current minimum, maximum or 
average values and bookkeeping of various sorted lists and 
indexes. It has been noted that communication costs a great lot 
when compared to local processing, as also the reduction in 
traffic simplifies network design significantly, thus permitting 
scalability to a large number of nodes. As we see in Section 6, 
the energy required for the transmitting one byte is roughly 
equivalent to executing 688 CPU instructions, and the cost of 
writing to the flash is less than 10% of the energy required to 
transmit the same amount of data, making local storage and 
processing highly desirable. 

Efficient evaluation of top-k queries in our platform can be 
achieved by estimating some threshold below which tuples do 
not need to be processed or transmitted from the sensor nodes. 
The key idea is to transmit only the necessary information 
towards the querying node and to perform calculation in the 
network rather than in a centralized way. In this scheme, each 
sensor node maintains locally in the flash memory a window of 
m measurements. This window evolves with time, and therefore, 
once the limit of the available memory is reached, current 
aggregates should be transmitted to the sink, otherwise at each 
new time moment the oldest measurement is deleted. We note 
however that given the capacities of SD-Cards m can be very 
large. Registered queries can perform some local aggregation, if 
the correctness of the query outcome is not violated, before 
values are propagated towards the parent.  
 
4.2 Providing Local Access Methods 
 
Efficiently evaluating the queries described above requires 
efficient access to the data that is stored on the "external" flash 
memory. Therefore we plan to deploy certain access methods 
(indexes) directly at the sensor nodes. These access methods will 
serve as primitive operations for the efficient execution of a 
wide spectrum of queries. Since the flash card on each node vi 
can only hold m pages (oi0…oim) the available memory is 
organized as a circular array, in which the newest oij pair always 
replaces the oldest oij pair. Note that this sorted page 
organization allows each sensor to have random or sorted access 
by timestamp in O(1), without the requirement of any index.  

Next we address how indexes become useful, when we 
need to have access by value as well as the challenges that need 
to be solved. 
i) Random Access By Value: An example of such operation is to 
locally load the records that have a temperature of, say, 70F. In 
order to fetch records by their value we will use a static hash 
index. 

ii) Sorted Access By Value: An example of such operation is to 
locally load the records that have a temperature between 50F-
70F. In order to fetch records by their value we will use a simple 
B+ tree index. This index is a minimalistic version of its 
counterpart found in a real database system. It consists of a small 
number of non-leaf index pages which provide pointers to the 
leaf pages.  

Depending on the sample rate of a query, we expect to have 
a number of insertion and deletion that need to be handled 
efficiently. For this purpose we plan to keep a buffer for a small 
set of leaf pages(each page is 512 bytes) in the MCU flash 
memory (which is 32KB). 
 
4.3 Efficient Top-k Query Evaluation in RISE 
 
We now sketch an algorithm to compute top-k queries which is 
designed to take full advantage of the capabilities of the sense 
and store paradigm. This algorithm, the Threshold Join 
Algorithm, decreases the number of values transmitted from each 
sensor, by using an additional probing and filtering phase.  

More specifically, the algorithm consists of three phases:  
1) the Lower Bound phase, in which the sink collects the union 
of the top-k results from all nodes in the network (denoted as 
Lsink={l1,l2,…,lo}, o ≥ k), 
2) the Hierarchical Joining phase, in which each node uses Lsink 
for eliminating anything that has a value below the least ranked 
item in Lsink, 
3) the Clean-Up phase, in which the actual top-k results are 
identified. 

The use of local structures that index the data stored in each 
sensor significantly improve the execution of this algorithm, and 
can have a fundamental impact of the efficiency of the execution 
of other complex queries.  

To validate the efficiency and applicability of our approach 
of evaluating top-k queries in our Sense and Store sensor 
framework, we have tested our algorithm in a Peer-to-Peer 
network collected at 32 sites in Washington and Oregon [2]. 
Each peer (node) maintained the average temperature on an 
hourly basis for 208 days between June 2003 and June 2004 (i.e. 
4990 moments), and our query was to find the 10 moments at 
which the average temperature was the highest. We compared 
our approach with the Sense and Send (SS) approach (sending 
all data over the network), and our preliminary results indicate 
that the SS approach consumes an order of magnitude more 
network bytes than our Sense and Store approach when our top-
k algorithm is applied. We also performed a comparison with a 
technique that transmits all data from the sensors but employs 
in-network aggregation in a hierarchical fashion to compute the 
average temperature of different time instances as the data are 
transmitted in the network. Our preliminary results show that our 
approach outperforms this technique by a factor of 5, in terms of 
network bytes consumed. 
 

5. ENERGY EVALUATION 
 

 We calculate the energy gains that can be achieved by use of the 
sense and store methodology and contrast and compare storing a 
bit of data to sending it over the network. For a single hop, 
energy consumed by the radio to transmit a single bit is 0.094 
nAh, and to receive is 0.042 nAh. On the other hand energy 
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required to write to the SD-Card memory is 0.007 nAh and to 
read is a mere 0.006 nAh. 

Note that although the SD-Card current consumption is 
more than that of the radio (best case), the considerably higher 
data transfer rate (3 Mb/s as compared to 76.8 Kb/s) implies that 
the read or write operation on the flash occurs for a much shorter 
time and hence the energy expense for flash operations is less 
than 10% of the radio operations. If the fraction of data that 
turns out to be useful is denoted by x, and needs to be 
transmitted over the radio, then total energy needed to write all 
the data to the flash and read and transmit the relevant data can 
be expressed as 

 
E=0.007 + x(0.094+ 0.006) nAh/bit 

Hence % energy savings can be expressed as 

S%= 92.14 – 105.89x 

As an example assume that the fraction of the useful data is 
50% of the data sensed. In that case energy savings is of the 
order of 39%. The break even point is when the data requested is 
around 87% of the total sensed data. Any application that uses 
less than 87% sensed data could immediately start saving energy 
if it starts to save the data on the flash card. 

Also, at a speed of 14.756 MHz and with an instruction of 4 
clock cycles, the processor is able to execute 688 instructions in 
the same amount of energy required to transfer a byte. 

The savings become even more pronounced when we 
consider the effect on the overall network. In the sense and send 
approach each node not only sends unnecessary packets but also 
acts as relays for other messages which have to be carried hop 
by hop to the sink, this phenomenon effectively floods the 
network with unnecessary packets. Less traffic would imply less 
contention and interference which in turn translates into 
additional energy savings and improved lifetime of the network. 
 

6. IMPLICATIONS  
 

Distributed, wireless, microsensor networks will enable myriad 
applications for sensing the physical world. Considering past 
efforts at experiments similar to the one discussed in Section 2, 
we adjudge that using the sense and store methodology will be 
very helpful in most of the data acquisition applications in the 
sensor domain. 

One of the first successful experiments involving 
environmental and habitat monitoring using sensor nodes was 
conducted by University of California, Berkeley at the Great 
Duck Island, Maine [11]. Various sensor motes fitted with light, 
temperature, barometric and acoustic sensors were utilized for 
the task. The sense and send paradigm although largely 
successful, resulted in a lifetime of almost seven months for the 
experiment. 

Our sense and store paradigm can be implemented in such 
situations to advantage, and to increase the longevity of similar 
experiments by virtue of saving power and cutting down on 
communication costs, as most sensor data in such specific 
experiments is a slowly varying, redundant time series[11] [13]. 
Moreover if the type of queries are similar to the k-maximum / 
minimum, average, etc such queries could be most effectively 
handled by sense and store as the nodes may continuously 
calculate and store these values in their local memories. 

Exemplifying the data received at a typical daylight sensor, 
that for most parts of the day, data across the light sensor 
increases gradually until midday and starts decreasing slowly 
thereafter, and remains zero at night [13]. Hence this data may 
be tightly compressed and stored during the day, while also 
calculating certain statistically important values such as 
maximum, minimum, average, etc, that would be transmitted to 
the base station at night, effectively reducing communication 
traffic during the day. Similar variations can be expected for 
various other geo-climatic variations such as the temperature and 
pressure at a location. Similarly, the measurement of event 
longevity, such as infrared monitoring of animal dwellings [11] 
[13] involves long intervals of near constant data, followed by 
the end of the event, and is largely a binary phenomenon, i.e. 
either the event persists or has lapsed. Sense and send may not 
be justifiable, due to the requirement of communicating the data 
throughout the lifetime of the event, and there seldom lies any 
information for the duration of the event. On the other hand 
sense and store can locally store and process the complete details 
of the event while communicating only relevant details for its 
reconstruction (such as start, stop time).  

Data fidelity and power consumption are two opposing 
criteria for sensor systems and most energy constrained sensor 
networks tend to balance between data transmission and storage. 
Many data such as photographic, acoustic, etc need to be 
downsampled before being transmitted over the wireless 
channel, thus sacrificing the quality of the sensed data, possibly 
hindering future data mining. Local storage at the sensors thus 
helps to preserve the original data, which can then be manually 
retrieved and correlated at the end of the experiment.  

Another problem afflicting sensor networks is the inability 
of modeling the actual behavior and lifetime of the nodes in the 
field, particularly due to lack of original operational data / post 
mortem data [13]. Due to the availability of large local storage, 
strategic vital statistics and diagnostic data vis-à-vis the motes 
may be stored for post mortem analysis thus aiding our 
understanding of actual deployment.  

Tiered sensor networks have been proposed for various 
environmental monitoring deployments such as the habitat 
sensing array for biocomplexity mapping, as proposed for James 
Reserve [6]. The platforms in the tiered network constituting the 
highest level of the hierarchy are relatively high performance 
computing devices communicating with the next in hierarchy, 
the tags (sensor nodes similar in capabilities to RISE). Sense and 
store enable the tags to locally store and manage data, as 
broadcasted from minute memory-less sensors (devoid of any 
receive circuitry), which just sense and send, owing to their 
utterly simplistic  and constrained designs. 

Overall the benefits of sense and store are perceptible in 
sensor networks deployed for monitoring time series data with 
predictable queries and where post mortem analysis and 
collection of data would be undertaken. 

Keeping these requirements in mind, we are currently 
calculating and storing the running average, daily min-max, 
daily average, in the on-chip flash, which are then stored into the 
SD-Card past elapse of twenty-four hours (RISE incorporates 
timekeeping, thanks to the realtime clock on the platform[4]). 
Currently under implementation are the top-k and range queries 
which would be completed after due field runs to determine a 
practicable value of the query window, along with generating 
diagnostics information (battery voltage) from the ADC. 
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7. RELATED WORK 
 

In the development of distributed sensor networks a large variety 
of prototype systems have been implemented and tested. The 
systems are spread all over the cost, power, functionality and 
form factor space. Table 2 contrasts the RISE platform to some 
of the low cost, low power contemporary sensor platforms. In 
[7] a survey of current platforms and a classification according 
to hierarchies is presented. In the low cost, low power generic 
sensor spectrum we notice the absence of a platform which 
boasts a large memory. Some other platforms in the high end, 
high bandwidth category feature high end processors and 
expandable memories, some including support for flash. 
However these high end platforms are more of a tradeoff 
between the requirements of the traditional low power embedded 
sensors, which can be deployed in large numbers, and the 
substantial requirements of high end applications and 
networking, as also the convenience, usability of a desktop 
development environment.  

Systems which propose a declarative approach for querying 
sensor networks include TinyDB [10] and Cougar [15]. These 
systems achieve energy reduction by pushing aggregation and 
selections in the network rather than processing everything at the 
sink. Both approaches are optimized for sensor nodes with 
limited storage and relatively short-epochs, while our techniques 
are designated for sensors with larger memories and longer 
epochs. In Data Centric Storage (DCS) [14] data with the same 
name (e.g. humidity measurements) are stored at the same node 
in the network, offering therefore efficient location and retrieval.  
However the overhead of relocating the data in the network can 
become expensive if the network generates GBs of data. 
 

8. CONCLUSION AND FUTURE WORK 
 

In this paper, we present RISE, a networked sensor system 
featuring a large storage memory, thus paving the way for a new 
paradigm in power conservation for applications that collect data 
over long periods of time viz. environmental and habitat 
monitoring. Since adequate memory and power conservation is 
often a significant design criterion for developing a sensor 
platform, we believe that adoption of sense and store along with 
efficient query mechanisms provide significant energy benefits 
to a wide spectrum of applications that can use the large memory 
for local storage, aggregation and compression before 
transmitting the results towards the sink. Moreover, the stored 
diagnostics data, retrieved from sensors would help us 
accurately determine causes of failure and aid development of 
better and efficient sensing platforms. Presently these options 
are available only in the sensor systems belonging to the class of 
power hungry and complex platforms. In addition we expect that 
with the provision of efficient access methods, our new 
framework would enable wireless sensor systems to cope with 
highly demanding new generation applications that have not yet 
been addressed adequately. In future we plan to investigate the 
effectiveness and limitations of our framework on a wide 
spectrum of sensor platforms.  
 
 
 
 
 

Platform MCU MCU, 
Active 
Current  

On 
Chip 
RAM 

On 
Chip 
Flash 

Aux. 
Mem. 

RISE 24 MHz 
8051 core  

14.8 mA 2KB 32KB Upto 1 
GB 

RENE  4 MHz 
AT90s8535 

6.4 mA 512B 8KB - 

MICA 
MICA 
2DOT 

16 MHz  
ATMega 
128L 

8 mA 4KB 128KB 512K
B 

Telos 8 MHz  TI 
MSP430 

0.56 mA 2KB 60KB 512K
B 

EcoNode 16 MHz 
8051 core 
NRF24E1 

3 mA 4K 32KB 
EEPR
OM 

- 

iBadge 4 MHz 
ATmega 
103L 

5.5 mA 4K 128K Option
-al 
64 KB 

Table2. Contemporary generic sensor platforms 
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