
BiToS: Enhancing BitTorrent for Supporting
Streaming Applications

Aggelos Vlavianos, Marios Iliofotou and Michalis Faloutsos
Department of Computer Science and Engineering

University of California Riverside
Riverside, CA

Email:{aggelos, marios, michalis}@cs.ucr.edu

Abstract— BitTorrent (BT) in the last years has been one of the
most effective mechanisms for P2P content distribution. Although
BT was created for distribution of time insensitive content, in this
work we try to identify what are the minimal changes needed in the
BT’s mechanisms in order to support streaming. The importance
of this capability is that the peer will now have the ability to
start enjoying the video before the complete download of the
video file. This ability is particularly important in highly polluted
environments, since the peer can evaluate the quality of the video
content early and thus preserve its valuable resources.

In a nutshell, our approach gives higher download priority
to pieces that are close to be reproduced by the player. This
comes in contrast to the original BT protocol, where pieces are
downloaded in an out-of-order manner based solely on their
rareness. In particular, our approach tries to strike the balance
between downloading pieces in: (a) playing order, enabling smooth
playback, and (b) the rarest first order, enabling the use of
parallel downloading of pieces. In this work, we introduce three
different Piece Selection mechanisms and we evaluate them through
simulations based on how well they deliver streaming services to
the peers.

I. INTRODUCTION

BitTorrent (BT) is a second generation peer-to-peer (P2P) file
sharing protocol, designed by Bram Cohen [1]. During the last
years, BitTorrent has been proved to be a very effective mecha-
nism for P2P content distribution [2]. The success of BT lies on
its ability to distribute content quickly by utilizing the capacity
of all the peers in the P2P BT network. This ability comes
from mechanisms that provide incentives to peers to contribute
to the BT community preventing them from becoming Free-
Riders. BT has attracted the interest of the research community,
which through simulations or measurements try to capture the
true characteristics of BT. Other studies, try to point out the
effectiveness or the deficiency of the mechanisms of BT and
provide ways to improve it. This intense interest strengthens our
statement that currently “BT is the king of the P2P protocols”.

While BT has proved that it can successfully support dis-
tribution of time insensitive content, no work what so ever
has been done in order BT to support time sensitive content.
In this work, we will try to push the capabilities of BT to
its limits, by studying if it can support content delivery with
time constrains. Even though the current implementation of BT
doesn’t support this functionality, for reasons that are explained
later, we try to add this functionality to the protocol with
minimum modifications.

Can BT be modified to support streaming? This is the question
we address here. BT was not designed for streaming media,
and earlier works argue that BT in its current form is not
suitable for streaming [3]. In our work we want to enhance BT
with a view-as-you-download service. We want a peer to start
reproducing the video content that is currently downloading,
before it downloads the whole video file. This is very beneficial
for the peer, because:

a) It reduces the time needed to start enjoying the video
b) It allows the peer to evaluate the quality of the video file

without having to spend all its resources to download it first.
This is particularly helpful in highly polluted environments [4].

In this work we propose BitTorrent Streaming (BiToS), a
protocol with the ability to support streaming based on BT.
We identify the piece selection mechanism as the only thing
that needs to be changed from the original BT protocol. BiToS
becomes aware of the streaming order of the piece, thus pre-
ferring pieces that will be played soon. In more detail, it tries
to strike the balance between downloading pieces in: a) playing
order, enabling smooth playback, and b) the rarest first order,
enabling the use of parallel downloading of pieces. An advantage
of our approach is that it is tunable in that we can control the
operation point between pure streaming and the original BT. Our
preliminary simulations show that our approach is promising in
providing streaming data in a timely fashion. In addition, we
show that there exists a selection of system parameters that can
give very good results.

The rest of this paper is organized as follows: In Section
II, we describe briefly how the BitTorrent protocol works and
its core mechanisms. In Section III, we present the related
work. In Section IV, we identify what streaming services can
be supported by the protocol with minimal changes, as well as
we decompose BT and specify the exact mechanisms that need
modifications. In Section V, we introduce our innovative BiToS
protocol, while in Section VI, we present the experimental
evaluation of our model. Finally, the paper is concluded in
Section VII along with the future work.

II. BITTORRENT
BitTorrent’s goal is to distribute fast and efficient large files

by using the upload bandwidth of the downloading peers. BT is
using swarming techniques, in which the torrent file (the content
that is distributed), is split in pieces (typically 256KB in size).



In that way, peers can simultaneously download pieces from
other peers. While the peer is downloading pieces of the file, it
uploads the pieces that it has already acquired to its peers. Each
time the peer has a new piece, it advertises this information to
its peer set (the peers that the peer is connect to). The only
centralized component of BT is an entity called tracker. The
tracker is responsible to help the peers find each other and
to keep the download/upload statistics of each peer. Moreover
peers during their initialization they retrieve from the tracker
information about the file, such as the number of pieces that the
file is split, the hashes of each piece (for integrity verification),
etc.

The strength of BT lies in its ability to resist to the Free-Riders
phenomenon, in which selfish peers choose only to download
the file without uploading. BT uses a Tit-for-Tat policy, where
each peer chooses to upload to its peer as long as it takes
something in return. If the neighbor peer behaves selfishly the
Choking mechanism is invoked and the peer stops uploading to
its neighboring peer. BT distinguishes peers into two categories,
the seeds and the leechers. Seeds are peers that have already
the whole file and leechers are peers that are in the progress of
downloading the file. As soon as a leecher has downloaded the
whole file, it becomes a seed.

Another vital mechanism of BT is the Piece Selection mech-
anism. Peers always select to download the rarest pieces within
their peer set. This provides fast replication of the rarest pieces
and ensures that the torrent file won’t become easily extinct,
in case a peer that has these particular pieces leaves. More
information about the BitTorrent protocol can be found in [5].

III. RELATED WORK
In recent years, due to its popularity, BT has been the center of

significant research. BitTorrent has been studied from different
perspectives and many aspects of the BT application have been
revealed. In [6] [7], they examine how well the incentive mecha-
nism works and propose new simple mechanisms that can boost
cooperation between peers even more. In [8] [9], the authors
used the log file from a tracker in order to understand better
the behavior of the BT peers, as well as the efficiency of the
protocol in presence of flash crowds. From different perspective
the authors in [10] instrumented a BT client and by gathering
statistics and messages between their client and its peers tried to
provide an analytical understanding of BitTorrent. Their findings
show that BT is robust, efficient, realistic and inexpensive
solution to the classical server based content distribution scheme.

A recent attempt [3] tries to provide streaming service by
using a hybrid server/P2P streaming system approach. The
clients retrieve the stream from a dedicated streaming server
while in parallel share pieces using BT. The BT protocol remains
almost unaltered with the only modification that clients won’t
download any data prior to the current playback time. This work
differs from ours, due to the existence of the dedicated streaming
server. In our approach we consider only BT as the primary
mechanism for streaming. Moreover, in [3] they state that BT is
not suitable for streaming. The stated reason is that peers will
have only sequential pieces of the stream and thus Tit-for-Tat

will fail. However in our work we show that by requesting pieces
in a rarest first manner within a small window of the file, we
can guarantee diversity of pieces as well as high QoS.

Another interesting work is CoolStreaming [11]. CoolStream-
ing, uses a data-centric design of an overlay network. Similar
to our work, they introduce the notion of a sliding time window
from which peers select to download a piece. The decision
of requesting a particular piece is made based on a heuristic
scheduling algorithm, which is similar to the Piece Selection
mechanism found in BT. However, in contrast to our work,
they use a fixed size sliding window without considering the
adjustment of its size based on current conditions. As we show
later in this paper, the length of this window can greatly affect
the QoS. Other interesting work is Chainsaw [12], which uses
BT concept but also uses gossip and pushed-based approaches
that deviate from the BT mechanisms.

Other approaches, like [13] [14] [15], try to use BitTorrent
like technology in order to incorporate streaming capability to
the protocol. However the model used, as stated in [16], is totally
different, because the clients generally just retransmit the feed
they are receiving from an upstream server.

IV. BITTORRENT LIMITATIONS IN STREAMING
In this section, we identify the limitations of BT in providing

streaming services and describe how streaming is possible in
BitTorrent. Initially we present what kind of time sensitive traffic
can be supported by the BitTorrent protocol. We find that BT
can potentially deliver Video Streaming services, as long as
some minor changes are made to the protocol. In particular, we
identify that the Piece selection mechanism of BT is the only
module that needs modification.

A. BT vs Time Sensitive Data

In Section II, we have seen that one of the two important
mechanisms of BT is the Piece Selection mechanism. Although
this mechanism is very efficient in minimizing the probability
for a certain piece to become extinct and very effective in
providing peers with rare pieces that can use in the Tit-for-
Tat mechanism (in order to download pieces from other peers),
it fails miserably in case of time sensitive traffic. The reason
is that with time sensitive data each piece should be received
within a certain time limit. After this deadline, the piece is
not useful and will be discarded. This factor is not taken
into consideration in the original piece selection mechanism
of BT and thus it cannot provide time sensitive distribution
services, since pieces are requested based on their rareness and
not by their deadline. Consequently, the current piece selection
mechanism needs modifications in order BT to be able to support
this kind of service.

The other vital mechanism of BT is the Incentive mechanism.
This mechanism in case of time sensitive data distribution is
even more beneficial for the welfare of the swarm. A Free-
Rider participating in the distribution of time insensitive data,
who contributes none or only a small portion of its upload
capacity, would receive a small fraction of download capacity,
due to the Tit-for-Tat policy [17]. This wouldn’t be a problem,



Selection
Process

Insert Piece to 

High Priority 

Set

Download
Complete

High Priority 
Set

Remaining
Pieces Set

Received
Pieces

Player Buffer

20 2117 18 1915 1612 13 1410 117 8 95 62 3 41

13 1215 1419 18 1721 20 610 9 811

22

22

Legend

Downloaded

Currently 
Downloading

Missed Player 
Deadline

Not Requested or 
not Downloaded

Fig. 1. Our Approach for Supporting Streaming in BT

since the Free-Rider can wait more time until the whole file
is downloaded. However, with time sensitive traffic, the Free-
Riders cannot afford to wait more time, since each piece
has a certain lifetime. In other words, time constrained data
distribution provides stronger incentives to peers to avoid being
Free-Riders.

B. Time Sensitive Traffic

The most common time sensitive traffic are Voice, Live Video
Streaming and Video Streaming (playback).

Voice and Live Streaming are very demanding in terms of
time constrains on delivery and thus increases the difficulty of
supporting these services through BT-based protocols. However,
the main reason that these services cannot be supported is
that BT protocol needs a lot of modifications, which would
result in a creation of a new protocol. In more detail, in
Voice and Live Video Streaming, packets are not known a
priori, but are created dynamically. If we try to translate this
property into necessary changes to BT protocol, we would have
to totally alter the tracker entity and some parts of the peer
communication protocol. This includes functions on how the
new pieces are advertised to the peers, how new pieces are
updated and how a peer decides which pieces (new or old) to
download. Consequently BT cannot support this kind of time
sensitive traffic, without replacing the BT protocol with a new
protocol.

On the other hand, Playback Video Streaming is a good
candidate of time sensitive traffic that can be supported by our
approach. In Playback Video Streaming all the pieces of the file
are known a priori and therefore the tracker entity can remain
the same. The only modification needed is the replacement of
the current Piece Selection mechanism, for reasons that were
explained in IV-A

V. BITOS
In this Section, we present our approach for providing stream-

ing services in BT. We discuss the main components of the
approach and their functionalities, as well as how they can
potentially dynamically adjust according to current conditions.

A. Our Approach

Our approach consists of three main components, as shown
in Fig. 1. We should point out that Fig. 1 represents a pictorial

presentation of how our approach works and does not correspond
to the structure of an implementation approach. In detail the
functionalities of the components are:

• Received Pieces: Contains all the downloaded pieces of the
video stream, that the peer has ever downloaded. The state
of a piece can be Downloaded, Not-Downloaded or Missed.
A piece has state Missed, if it didn’t meet its deadline to
be reproduced by the player.

• High Priority Set: Contains the pieces of the Video Stream
that have not been Downloaded yet, are not Missed and are
close to be reproduced by the player. Thus, these pieces
have higher priority to be requested over the rest of the
pieces. This set has a fixed size of pieces and this size is a
system parameter. A piece in this set can be in the following
states: Not-Requested or Currently-Downloading.

• Remaining Pieces Set: Contains the pieces that have not
been Downloaded, are not Missed and are not in the
High Priority Set. A piece can be in the Not-Requested
or Currently-Downloading state.

In the Selection process, the peer chooses with some proba-
bility p to download a piece of the video stream, which is
contained in the High Priority Set and with probability 1− p a
piece contained in the Remaining Pieces Set. The probability p
represents the balance between the immediate need for a piece
and the acquisition of a piece as future “currency1”. The High
Priority Set, contains all the pieces that are quite close to be
reproduced. Thus, peer desires to download these pieces earlier,
in contrast with the Remaining Pieces Set, which contains pieces
that won’t be needed in the near future. The probability p,
can be adjusted dynamically to adapt to different conditions.
The way that this probability is adjusted is explained later. The
mechanism used to choose a piece within the High Priority Set
or Remaining Pieces Set is the Rarest First mechanism, which
is the original mechanism of BT. A minor change of the Rarest
First mechanism is that if two or more pieces have the same
rareness, the piece which is closer to meet its deadline will be
chosen. A peer at any given time can have at maximum a total
of k Currently-Downloading pieces.

After a piece is downloaded, the piece is removed from
its current set and joins the Received Pieces Set (Download
Complete function in Fig. 1). At the same time, if the piece was
in the High Priority Set, the Insert Piece to High Priority Set
function delivers the next in order piece to the High Priority Set
from the Remaining Pieces Set. For example in Fig. 1, piece
12 will move to the High Priority Set if any of the Currently-
Downloading pieces becomes Downloaded. In this way the
cardinality of the High Priority Set remains fixed. The pieces
within the sets do not have to be sequential since the pieces are
not requested in order, i.e pieces 7, 16 are missing from the High
Priority Set and Remaining Set respectively since these pieces
have been downloaded. We should point out that the Received
Pieces Set contains the downloaded pieces that can be shared
with other peers.

1Pieces from the Remaining Pieces Set are more rare and thus their acquisition
is beneficial due to the Tit-for-Tat policy.



Determining the timeliness of the arrival: After the initia-
tion of the player the Player Buffer requests the needed pieces
from the Received Pieces Buffer. Another important function
of the system, which is not shown in Fig. 1 is the Piece
Deadline function. This function is responsible for every Not-
Downloaded or Currently-Downloading piece, to determine if
the piece can be downloaded on time or not. If the piece cannot
meet its playback deadline, then it will not be asked to be
downloaded (or its download can be aborted) and will be marked
as Missed, i.e piece 3 in Fig.1. In order to make this decision,
the function compares the expected playback time of the piece
and the minimum time2 needed to download it. If the expected
playback time is smaller, then the piece won’t arrive on time
and consequently won’t be needed.

We should point out that the described approach is very simple
to implement and can be easily incorporated into BT by just
replacing the current Piece Selection mechanism.

B. The Effect of the probability p

The probability p can have an important impact on the
performance of the Streaming. Large values of p guarantee that
the pieces that will be reproduced soon, will be requested for
downloading earlier than the rest of the pieces of the video
stream. On the other hand, this could lead to a situation in
which the peer chooses to download pieces that most of the
peers have. Therefore, the peer wouldn’t have any rare pieces
to exchange and consequently would be choked by most of
the peers according to the Incentive mechanism of BT. Apart
from this, rare pieces that are currently available, might not be
available in the future. For example, peers that have these pieces
might leave the network or fail. Hence, by acquiring these rare
pieces before they become extinct we can increase the QoS.

The adaptation of the probability p can be triggered by
events, such as a miss of a deadline. For example, a miss of a
piece’s deadline while there are many pieces unplayed inside the
Received Pieces Buffer indicates that the probability p should be
increased in order to give higher priority to the pieces that have
shorter deadlines. On the other hand, if we miss many deadlines
and there are no other pieces inside the Received Pieces Set and
the download rate is small, this could indicate that the peer is
chocked by most of its peers, because it doesn’t have pieces to
exchange. Therefore, the decrease of the value of the probability
can be helpful in order to acquire some rare pieces that the peer
can use as leverage.

VI. EXPERIMENTAL EVALUATION
In order to evaluate our approach we have developed a

BitTorrent simulator. In this simulator we have included all the
functionalities of the original BT protocol and we have also
incorporated the BiToS streaming model.

We evaluate our model by using a synthetic scenario. In this
scenario we have 4 seeders and a total of 400 peers arriving in
flash crowd, which is a typical behavior in the BitTorrent swarms
[9]. In these scenarios (flash crowds), the classic streaming

2Here we use a lower bound of the expected download time which we define
as the remaining of the piece divided by link bandwidth.

server model performs poorly and the importance of the p2p
approaches, which provide a robust and effective solution, is
revealed. For streaming, we used a video file of 10 minutes
length, which was encoded using quality of 500Kbps. In order
to support the streaming service, the peers should be able to
download with rate at least the rate of the stream, otherwise the
peer would experience poor streaming quality. For this reason,
in our scenario, all peers have total download rate equal to
500Kbps. The upload rate is also set to 500Kbps, because
according to [10] the download rate is positively correlated to the
upload rate. In more detail, Legout et al. [10] showed through
experiments that the amount of uploaded data is very close to the
downloaded data. This is explained by the Incentive mechanism
of BT. Thus, if we want to support a streaming service of the
particular quality, the peers should have download/upload rate at
least equal to the streaming rate. The rest of the key parameters
of the BT protocol, such as the active peer set3, are set to their
default values. Particularly for the active peer set, our decision
to retain the default value is strengthened by the fact that, Zhang
et al. [11] found that for the same size of active peer set they
observed optimal performance.

A. Experimental Results

In the evaluation, we compare the performance of our ap-
proach with three different mechanisms in selecting pieces.

• Sequential (p = 1): The pieces are requested in order
within the High Priority Set, without taking into account
their rareness. In other words, this mechanism represents
how a straight forward streaming would work.

• Rarest First (p = 1): The pieces are requested only within
the High Priority Set, using the Rarest First mechanism.

• Rarest First (p = 0.8): The pieces are requested with
probability 80% within the High Priority Set and with
20% probability within the Remaining Pieces Set, using
the Rarest First mechanism.

In the evaluation, we don’t do any dynamic adaptation of
the probability p, as explained in V-B, in order to analyze
the dynamics of the different parameters easier. Note that the
original BT behavior corresponds approximately to p = 1 and
High Priority Set Size equals to 100% of the file.

The main metric for the evaluation of the mechanisms is
the playback continuity of the stream. Therefore, we use the
Continuity Index (CI) metric as defined in [11]. The Continuity
Index is defined as the number of pieces that arrived before the
playback deadline over the total number of pieces. Fig. 2 shows
the CI for the three mechanisms as a function of the size of the
High Priority Set.

Our limited rarest first works well for streaming: From
Fig. 2, we can clearly see that the rarest first mechanisms
behave better than the sequential mechanism. The reason is
that the rarest first mechanisms, increase the diversity of the
pieces inside the swarm by replicating first the most rare pieces.
Thus, it increases the parallelism in the downloading process and

3The active peer set is the maximum number of concurrent upload connections
that a peer can have, the default is 4.



utilizes better the bandwidth within the swarm. However, in the
sequential mechanism the same pieces are requested by all peers
and consequently there are only few providers of these pieces,
which results in low replication rate.

Selecting the size of the High Priority Set: Another interest-
ing observation from Fig. 2 is that in the rarest first mechanisms
(p = 1, p = 0.8), for small (< 5%) or large size (> 20%) of
the High Priority Set the CI is decreased. The reason is that for
small size (< 5%) of the High Priority Set, peers do not increase
the diversity of the pieces because they tend to download the
same pieces due to the small size of the set. This results in low
use of parallelism in downloading, which stalls the downloading
process and results in low CI. On the other hand when the size
of the list is large (> 20%), the peer downloads pieces based on
their rareness, without considering their deadline and thus the
CI drops. In other words, the optimal size of the High Priority
Set (' 8%) must capture the pieces that will be needed soon
for the playback and at the same time is large enough for the
rarest first piece selection mechanism to work properly.

The effect of the probability p: The effect of p on the
performance of the Rarest First mechanism is obvious. In Fig. 2,
it is clear that the Rarest First with probability p = 0.8 performs
better, for small reasonable sizes of the High Priority Set. The
reason is that: a) it acquires some rare pieces before they become
extinct and b) it increases the diversity of the exchanged pieces
between peers. Thus the CI is improved. However, with larger
sizes of the High Priority Set, the pieces inside the list are
already far away from playback time and therefore retrieving
pieces from outside the list (with 20% probability) degrades the
overall performance of the system even more. We should note
that the optimal value of the probability for the Rarest First
mechanism highly depends on the dynamics of the scenario.
Thus, for our specific scenario4 we tried different values for the
probability and we found that for probability p = 0.8, we get
the best results.

In Fig. 2, we can see that the CI is not getting much worse
as the size of the High Priority Set is increased over 30% of
the file. This is a consequence of the flash crowd scenario
which we use in our simulation, in which all peers arrive
almost simultaneously. Thus, peers have similar playback times
and therefore the pieces required by each peer are almost the
same. This fact together with our modification of the rarest first
algorithm (the piece with shortest deadline is chosen among
pieces with the same rareness), explain the almost flat line after
the size of the High Priority Set exceeds 30% of the file.

Robustness to greedy peer behavior: In order to illustrate
the preponderance of the Rarest First mechanism compared to
the Sequential, we have created a flash crowd scenario in which
the size of the High Priority Set, file size and arrival patterns
of peers are constant and we stream a 5 min Video-file. By
varying the seeding time5 the dynamics of the system change
and therefore we can observe the robustness of the two methods.

4In a different scenario, the optimal operation point may be different. This
suggests the need for an adaptive mechanism to set the value of p. Although
we have some preliminary ideas, this extends beyond the scope of this work.

5The amount of time that a peer stays in the network after it becomes a seeder.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

High Priority Set Size as % of File

C
.I
.

Rarest First (p=1) Sequential Rarest First (p=0.8)

Fig. 2. High Priority Set Size as a percentage of File

0.4

0.5

0.6

0.7

0.8

0.9

1

80 140 750 1000

Max Seeding Time (ms)

C
.I
.

Sequential Rarest First (p=1)

Fig. 3. C.I. versus the MAX Seeding time

In Fig. 3, it is obvious that in a highly dynamic environment with
peers leaving as soon as they download the file, the rarest first
algorithm is much more robust compared to the sequential. This
holds because, with the rarest first algorithm each peer chooses
to download rare pieces which might not be available in the
future. Pieces might not be available due to the departure of the
peer that is offering it.

Note also that the buffering time has a significant effect on
the performance. Large buffering time, clearly will increase the
performance of the protocol.

VII. CONCLUSION
In this work we have shown that Streaming in BT is possible

under our proposed approach. We have shown through simula-
tions that our approach is feasible and can be easily (with minor
modifications) incorporated into the original BT protocol.

As future work we aim at investigating the dynamics of
the seeders/leechers ratio, as well as the relation between
them. Moreover, we want to explore and identify the events
or conditions that can trigger a dynamic adaptation of the
probability p and the Desired Pieces list size. Such a dynamic
scheme would be more robust in environment changes and can
improve the streaming performance even more. Finally, we plan
to incorporate our modifications into the BT Mainline client [18]
and evaluate our model in PlanetLab [19], in order to further
investigate the effectiveness and the robustness of our streaming
model in a real network deployment.

REFERENCES

[1] B. Cohen. Incentives build robustness in bittorrent. In 1st Workshop on
the Economics of Peer-2-Peer Systems, Berkley, CA, June 5-6 2003.



[2] CacheLogic. http://www.cachelogic.com/research/slide1.php.
[3] C. Dana, D. Li, D. Harrison, and C. Chuah. Bass: Bittorrent assisted

streaming system for video-on-demand. In International Workshop on
Multimedia Signal Processing(MMsP) IEEE Press, 2005.

[4] Nicolas Christin, Andreas S. Weigend, and John Chuang. Content avail-
ability, pollution and poisoning in file sharing peer-to-peer networks. In
EC ’05: Proceedings of the 6th ACM conference on Electronic commerce,
pages 68–77, New York, NY, USA, 2005. ACM Press.

[5] BitTorrent Specifications. http://wiki.theory.org/BitTorrentSpecification.
[6] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu. Influ-

ences on cooperation in bittorrent communities. In Proceedings of ACM
Sigcomm, Philadelphia, PA, Aug 2005.

[7] S. Jun and M. Ahamad. Incentives in bittorrent induce free riding. In
Proceedings of ACM Sigcomm, Philadelphia, PA, Aug 2005.

[8] JA. Pouwelse, P. Garbacki, D.H.J Epema, and HJ. Sips. The bittorrent p2p
file-sharing system: Measurements and analysis. In Proceedings of IPTPS,
Ithaca, New York, Feb 2005.

[9] M. Izal, G. Urvoy-Keller, P.A. Felber E.W. Biersack, A. Al Hamra, and
L. Garc’es-Erice. Dissecting bittorrent: Five months in a torrent’s lifetime.
In Proceedings of PAM, Antibes Juan-les-Pins, France, Apr 2004.

[10] A. Legout and G. Urvoy-Kellerand P. Michiardi. Understanding bittorrent:
An experimental perspective. Technical report, Sophia Antipolis, France,
2005.

[11] X. Zhang, J. Liu, B. Li, and T.P. Yum. Coolstreaming/donet: A data-driven
overlay network for peer-to-peer live media streaming. In Proceedings of
IEEE/INFOCOM, Miami, March 2005.

[12] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A.E. Mohr.
Chainsaw: Eliminating trees from overlay multicast. In Proceedings of
IPTPS, Ithaca, New York, Feb 2005.

[13] PeerCast. http://www.peercast.org/.
[14] Streamer P2P. http://www.streamerp2p.com/.
[15] P2P-Radio. http://p2p-radio.sourceforge.net/.
[16] Bit Torrent FAQ. http://wiki.theory.org/BitTorrentFAQ.
[17] D. Qiu and R. Srikant. Modeling and performance analysis of bittorrent-

like peer-to-peer networks. In Proceedings of ACM Sigcomm, Portland,
OR, Aug 2004.

[18] The Official BitTorrent Home Page. http://www.bittorrent.com/.
[19] The PlanetLab project. http://www.planet-lab.org/.


